
- •Старооскольский технологический институт им.А.А.Угарова
- •Шафоростова е.Н. Информационные технологии
- •Часть 1
- •220700- Автоматизация технологических процессов и производств
- •230400 – Информационные системы и технологии
- •Содержание
- •Предисловие
- •1. Порядок и правила выполнения практических работ
- •Технологии операций с векторами
- •Вычисление произведения вектора на число
- •Технологии операций с матрицами
- •Суммирование и вычитание матриц
- •Вычисление произведения матриц
- •Решение систем линейных уравнений Метод обратной матрицы
- •Метод наименьших квадратов
- •Применение технологий при решении экономических задач
- •Моделирование последовательностей и рядов Создание массива элементов числовой последовательности
- •Приближенное вычисление пределов числовых последовательностей
- •Применение последовательностей в экономических моделях
- •Применение рядов в экономических моделях
- •МоделированИе и исследованИе функций Способы задания функций
- •Технология построения графической модели функции
- •Вычисление предела функции
- •Вычисление корней функции одной переменной
- •Решение уравнений
- •Численное вычисление производной функции одного переменного
- •Вычисление локальных экстремумов функции
- •Технология получения математической модели функции по ее табличному представлению
- •Применение технологии исследования функций для решения экономических задач Кривые спроса и предложения, точка равновесия
- •Технология построения и исследования паутинной модели рынка
- •Вычисление предельных экономических показателей
- •Вычисление эластичности экономических показателей
- •Технология численного вычисления определенного интеграла
- •Технология приближенного вычисления
- •Технология точного вычисления
- •1.2. Задая для практической работы
- •1.3. Контрольные вопросы
- •Практическая работа №2 модели и технологии статического анализа
- •2.1 Теоретическое введение
- •Генерация случайной величины, распределенной по равномерному закону
- •Генерация случайных чисел в табличном процессоре
- •Вычисление числовых характеристик параметров случайных величин Вычисление числовых характеристик распределений вероятностей
- •Вычисление вероятности отдельных значений случайных величин Табличный закон распределения
- •Биноминальное распределение
- •Нормальный закон распределения
- •Технологии решения задач статистического анализа Выборочный метод и выборочная функция распределения
- •Построение выборочной функции распределения
- •Технологии вычисления основных статистических характеристик
- •Вычисление доверительного интервала для среднего значения
- •Технология проверки соответствия данных, полученных экспериментально, теоретическому распределению
- •Решение задач статистического анализа Технология решения задач дисперсионного анализа
- •Заполняемость гостиниц
- •Технологии решения задач корреляционного анализа
- •Данные наблюдений
- •Технология решения задач регрессионного анализа
- •2.2. Задания для практической работы
- •2.3.Контрольные вопросы
- •Вычисления по простым переменным ставкам
- •Вычисление накопленной суммы при реинвестировании по простым процентам
- •Дисконтирование по простым процентам
- •Финансовые расчеты по сложным процентам Вычисление наращения
- •Расчет номинальной и эффективной ставки процентов
- •Дисконтирование по сложной ставке процентов
- •Расчет стоимости ценных бумаг
- •Бз (Норма; Кпер; Выплата; Нз; Тип)
- •Бзраспис (Первичное; План)
- •Пз (Норма, Кпер, Выплата, Бс, Тип)
- •Норма (Кпер, Выплата, Пз, Бс, Тип, Предположение)
- •3.2. Задания для практической работы
- •3.3.Контрольные вопросы
- •Практическая работа №4. Численное решение уравнений средствами ms excel
- •4.1.Теоретическое введение
- •4.2. Задания для практической работы
- •4.3.Контрольные вопросы
- •Использование надстройки «Поиск решения»
- •Технология решения транспортной задачи линейного программирования
- •5.2.Задания для практической работы
- •5.3.Контрольные вопросы
- •Практическая №6 технология Решения задач дискретного программирования
- •6.1.Теоретическое введение
- •6.2. Задания для практической работы
- •6.3. Контрольные вопросы
- •Глоссарий
- •Список литературы
- •Учебное издание Шафоростова Елена Николаевна Информационные технологии
Вычисление доверительного интервала для среднего значения
Для вычисления доверительного интервала в MS Excel можно использовать специальную функцию ДОВЕРИТ или инструмент Описательная статистика.
Функция ДОВЕРИТ (альфа; станд_откл; размер) вычисляет ширину доверительного интервала. Ее параметрами являются:
альфа - уровень значимости, используемый для вычисления доверительной вероятности;
станд_откл - стандартное отклонение генеральной совокупности для интервала данных (предполагается известным или предварительно вычисляется);
размер - размер выборки.
Пример 2.12 Требуется найти границы 90% интервала для среднего значения, если по результатам 24 торгов среднее значение стоимости доллара составило 28 руб., а стандартное отклонение - 35 коп.
Решение
Установим курсор в любую свободную ячейку рабочего листа и установим для нее денежный формат.
Выполним команду меню Вставка/Функция. В окне Мастер функций в категории Статистические выберем из списка функцию ДОВЕРИТ.
В поля аргументов окна ДОВЕРИТ введем исходные данные: альфа - 0,1; станд_откл - 0,35; размер - 24.
После щелчка на ОК в ячейке будет вычислена полуширина 90% доверительного интервала для среднего значения выборки - 0,12 руб.
Таким образом, с 90%-ным уровнем надежности можно утверждать, что средняя стоимость доллара в диапазоне 27 руб. 88 коп. – 28 руб. 12 коп (рис. 2.16).
Рис. 2.16
Пример 2.13 Дана выборка стоимости валюты: 27,70; 27,85; 28,12; 28,20; 28,10; 27,75; 28,25 (рублей). Необходимо определить границы 95% доверительного интервала для среднего.
Решение
Введем в диапазон ячеек А2:А8 заданный массив чисел.
Включим инструмент Описательная статистика.
В поле Входной интервал диалогового окна Описательная статистика укажем ссылку на диапазон, содержащий выборку (А1:А8). Включим переключатель Выходной диапазон и в соответствующем поле укажем ссылку на ячейку, где будет размещен верхний левый угол результирующей таблицы (В2). Установим флажок Уровень надежности и в соответствующем поле введем число 95%. Установим флажок Метки в первой строке.
Щелкнем на ОК - на рабочий лист в указанный диапазон будет выведен результат (рис. 2.17).
Рис. 2.17
В результате вычислений для доверительной вероятности 0,95 и графе Уровень надежности получим величину доверительного интервала 0,207412. Это означает, что с вероятностью 0,95 для заданной Генеральной совокупности среднее значение будет находиться в интервале 27,99571 +/- 0,207412 (нижняя граница доверительного интервала 27,7883, верхняя граница - 28,20312).
Технология проверки соответствия данных, полученных экспериментально, теоретическому распределению
При решении практических задач закон распределения случайных величин и его параметры неизвестны. Однако для решения задачи необходимо иметь информацию о том, каков закон распределения и каковы его параметры. В этом случае решают задачу проверки гипотезы. Исходя из предположения (гипотезы), что распределение случайных чисел подчиняется тому или иному закону, выполняют проверку этой гипотезы. Суть задачи проверки соответствия сводится к оценке меры соответствия экспериментальных данных и какого-либо теоретического распределения. Методом проверки соответствия теоретическому распределению является использование критерия согласия. Одним из них является критерий согласия хи-квадрат.
В табличном
процессоре проверка согласия по критерию
хи-квадрат реализуется функцией ХИ2ТЕСТ.
Эта функция вычисляет вероятность
совпадения наблюдаемых (фактических)
значений и теоретических (гипотетических)
значений. Если вычисленная вероятность
ниже уровня значимости (
< 0,05), то утверждается, что экспериментальные
значения не соответствуют теоретическому
распределению.
Функция имеет параметры:
ХИ2ТЕСТ(фактический интервал; ожидаемый интервал);
где фактический интервал - диапазон данных, который содержит результаты наблюдения, подлежащие сравнению с ожидаемыми значениями;
ожидаемый интервал - диапазон данных, который содержит теоретические (ожидаемые) значения для соответствующих наблюдаемых.
Для получения правильных результатов необходимо, чтобы объем выборки был не менее 40, выборочные данные сгруппированы в интервальный ряд с количеством интервалов не менее 7, а количество наблюдений в каждом интервале (частот) не менее 5.
Пример 2.14 Требуется проверить соответствие нормальному закону распределения выборочных данных результатов сдачи экзамена, оцененных в следующих баллах: 48, 51, 67, 70, 64, 71, 85, 79, 80, 83, 86, 01,99, 56, 66, 65, 84,84,84, 75, 76, 77, 78, 80, 86, 88, 58, 69, 65, 81, 75, 78, Ь 80, 80, 83, 86, 80, 89, 60, 68, 55, 82, 64, 71, 72, 72, 73, 74, 74, 79.
Решение
В диапазон ячеек рабочего листа введем исходные данные в виде таблицы, содержащей баллы из приведенной выборки.
Выберем ширину интервала, равную 5 баллам, начиная от 50 до 100, и введем в диапазон F2.F12 граничные значения интервалов.
Подготовим заголовки создаваемой таблицы (ячейки G1, H1, I1).
Применяя функцию ЧАСТОТА, рассчитаем абсолютные частоты попаданий случайных величин в установленные интервалы - столбец Абсолютные частоты.
В ячейке Н15 вычислим общее количество наблюдений, используя формулу =CУMM(G2:GH) (рис.2.18).
Рис. 2.18
В ячейке Н16 вычислим среднее значение выборки, а в ячейке Н17 - стандартное отклонение.
Вычислим теоретические частости распределения. Поскольку мы проверяем соответствие заданной совокупности случайных величин нормальному закону распределения, то для расчета применим функцию НОРМРАСП. Установим курсор в ячейку Н2 и вызовем из Мастера функций функцию НОРМРАСП. Заполним поля аргументов: х - F2, среднее - $Н$16, стандартное_откл. - $Н$17, интегральный - 0, щелкнем на ОК.
В ячейку НЗ введем формулу =НОРМРАСП(F3;$Н$16; $Н$17;1)-СУММ($Н$2:Н2).
Скопируем введенную формулу в ячейки диапазона Н4:Н12.
Для вычисления теоретических частот установим курсор в ячейку 12 и введем формулу = $Н$16* Н2. Скопируем содержимое этой ячейки в ячейки диапазона I3:I12 (рис. 2.19).
Применяя функцию ХИ2ТЕСТ, определим соответствие данных выборки нормальному закону распределения. Для этого:
установим курсор в свободную ячейку 114, включим Мастер функций, выберем категорию Статистические, а в списке функций - функцию ХИ2ТЕСТ;
заполним поля аргументов функции: фактический - введем адрес диапазона абсолютных частот G2:G12, ожидаемый - адрес диапазона теоретических частот I2:I12. После щелчка на кнопке ОК в ячейке I14 будет вычислено значений вероятности того, что выборочные данные соответствуют нормальному закону распределения - 0,917143314.
Рис. 2.19
Поскольку полученная вероятность соответствия экспериментальных данных р = 0,917143314 намного больше уровня значимости =0,05, то можно утверждать, нулевая гипотеза не может быть отвергнута и экспериментальные данные не противоречат нормальному закону распределения. Но так как полученное значение вероятности очень мало отличается от 1, то можно говорить о высокой степени вероятности того, что экспериментальные данные соответствуют нормальному закону.