
- •Старооскольский технологический институт им.А.А.Угарова
- •Шафоростова е.Н. Информационные технологии
- •Часть 1
- •220700- Автоматизация технологических процессов и производств
- •230400 – Информационные системы и технологии
- •Содержание
- •Предисловие
- •1. Порядок и правила выполнения практических работ
- •Технологии операций с векторами
- •Вычисление произведения вектора на число
- •Технологии операций с матрицами
- •Суммирование и вычитание матриц
- •Вычисление произведения матриц
- •Решение систем линейных уравнений Метод обратной матрицы
- •Метод наименьших квадратов
- •Применение технологий при решении экономических задач
- •Моделирование последовательностей и рядов Создание массива элементов числовой последовательности
- •Приближенное вычисление пределов числовых последовательностей
- •Применение последовательностей в экономических моделях
- •Применение рядов в экономических моделях
- •МоделированИе и исследованИе функций Способы задания функций
- •Технология построения графической модели функции
- •Вычисление предела функции
- •Вычисление корней функции одной переменной
- •Решение уравнений
- •Численное вычисление производной функции одного переменного
- •Вычисление локальных экстремумов функции
- •Технология получения математической модели функции по ее табличному представлению
- •Применение технологии исследования функций для решения экономических задач Кривые спроса и предложения, точка равновесия
- •Технология построения и исследования паутинной модели рынка
- •Вычисление предельных экономических показателей
- •Вычисление эластичности экономических показателей
- •Технология численного вычисления определенного интеграла
- •Технология приближенного вычисления
- •Технология точного вычисления
- •1.2. Задая для практической работы
- •1.3. Контрольные вопросы
- •Практическая работа №2 модели и технологии статического анализа
- •2.1 Теоретическое введение
- •Генерация случайной величины, распределенной по равномерному закону
- •Генерация случайных чисел в табличном процессоре
- •Вычисление числовых характеристик параметров случайных величин Вычисление числовых характеристик распределений вероятностей
- •Вычисление вероятности отдельных значений случайных величин Табличный закон распределения
- •Биноминальное распределение
- •Нормальный закон распределения
- •Технологии решения задач статистического анализа Выборочный метод и выборочная функция распределения
- •Построение выборочной функции распределения
- •Технологии вычисления основных статистических характеристик
- •Вычисление доверительного интервала для среднего значения
- •Технология проверки соответствия данных, полученных экспериментально, теоретическому распределению
- •Решение задач статистического анализа Технология решения задач дисперсионного анализа
- •Заполняемость гостиниц
- •Технологии решения задач корреляционного анализа
- •Данные наблюдений
- •Технология решения задач регрессионного анализа
- •2.2. Задания для практической работы
- •2.3.Контрольные вопросы
- •Вычисления по простым переменным ставкам
- •Вычисление накопленной суммы при реинвестировании по простым процентам
- •Дисконтирование по простым процентам
- •Финансовые расчеты по сложным процентам Вычисление наращения
- •Расчет номинальной и эффективной ставки процентов
- •Дисконтирование по сложной ставке процентов
- •Расчет стоимости ценных бумаг
- •Бз (Норма; Кпер; Выплата; Нз; Тип)
- •Бзраспис (Первичное; План)
- •Пз (Норма, Кпер, Выплата, Бс, Тип)
- •Норма (Кпер, Выплата, Пз, Бс, Тип, Предположение)
- •3.2. Задания для практической работы
- •3.3.Контрольные вопросы
- •Практическая работа №4. Численное решение уравнений средствами ms excel
- •4.1.Теоретическое введение
- •4.2. Задания для практической работы
- •4.3.Контрольные вопросы
- •Использование надстройки «Поиск решения»
- •Технология решения транспортной задачи линейного программирования
- •5.2.Задания для практической работы
- •5.3.Контрольные вопросы
- •Практическая №6 технология Решения задач дискретного программирования
- •6.1.Теоретическое введение
- •6.2. Задания для практической работы
- •6.3. Контрольные вопросы
- •Глоссарий
- •Список литературы
- •Учебное издание Шафоростова Елена Николаевна Информационные технологии
Технология получения математической модели функции по ее табличному представлению
На практике часто бывает необходимо получить аналитическую формулу для функциональной зависимости, полученной экспериментально, модель которой представлена в виде таблицы. Это бывает необходимо в тех случаях, когда нужно найти значение функции в тех точках внутри данного интервала, где она таблично не задана - задача Интерполяции, либо вычислить значение функции в точках за пределами заданного интервала - задача экстраполяции.
Решение задач интерполяции и экстраполяции обеспечивается построением интерполяционной или аппроксимирующей функции L(x), приближенно заменяющей исходную f(x), заданную таблично. Подбор аналитической формулы сводится к вычислению входящих в нее параметров таким образом, чтобы из всех функций такого вида выбрать ту, которая наилучшим образом описывает зависимость между изучаемыми величинами.
При построении аппроксимирующей функции должны быть решены следующие вопросы:
- выбор типа аппроксимирующей функции L(x);
- оценка погрешности аппроксимации.
Подбираемая эмпирическая функция в зависимости от характерны экспериментальных данных может быть следующих видов:
- линейная (у = ах + b) обычно применяется в тех случаях, когда экспериментальные данные изменяются относительно постоянно;
- полиноминальная (у = а0 + а1х +а2 х2+ ...+ an хn) - используется для описания экспериментальных данных, попеременно возрастающих и убывающих;
- логарифмическая (у = а lпх + b), где а и b - константы, - применяется для описания экспериментальных данных, которые первоначально быстро возрастают или убывают, а затем постепенно стабилизируются;
- степенная (у = bx-a ), где a u b - константы, - используется для аппроксимации экспериментальных данных, скорость изменения которых увеличивается или уменьшается;
- экспоненциальная (y=beax), где а и b - константы, - применяется экспериментальных данных, которые быстро возрастают или убывают, а затем стабилизируются.
Близость исходной и аппроксимирующей функций определяется критерием аппроксимации. Наиболее распространен квадратичный критерий (R2), именно такой критерий оценки применяется в табличном процессоре. Не вдаваясь в подробности вычисления этого критерия, скажем: чем ближе значение этого критерия к единице, тем ближе аппроксимирующая функция к исходной, тем точнее полученная аналитическая модель отражает функциональную зависимость.
Чтобы получить аппроксимирующую формулу в табличном процессоре, нужно выполнить следующую последовательность действий:
- построить по имеющейся таблице экспериментальных данных графическую модель функции;
- установить указатель мыши на линию графика (ряд) и вызвать контекстное меню;
- в контекстном меню выбрать Добавить линию тренда - откроется диалоговое окно Линия тренда;
- в диалоговом окне Линия тренда на вкладке Тип, учитывая характер изменения функции на графике, выбрать вид аппроксимирующей функции, а на вкладке Параметры задать дополнительные параметры, в том числе установить флажок Показывать уравнение на диаграмме.
После выполнения приведенных операций на диаграмме будет отображена линия тренда (графическое отображение аппроксимирующей функции), а также аппроксимирующая функция в аналитическом виде.
Рассмотрим процесс получения аппроксимирующей функции на примере.
Пример 1.21 Имеются сведения о величинах страховых выплат по годам, представленные в таблице. Требуется исследовать характер изменения величины страховых выплат и подобрать аппроксимирующую функцию (таблица 1.6.).
Таблица 1.6
Год |
Сумма страховых выплат (руб.) |
1 |
150 000 |
2 |
200 000 |
3 |
300 000 |
4 |
450 000 |
5 |
450 000 |
6 |
420 000 |
Решение
В ячейки рабочего листа введем исходные данные в виде таблицы (рис. 1.27).
Рис. 1.27
По данным таблицы, полученным экспериментально, построим график. На графике видно, что экспериментальные данные вначале растут, а затем убывают и есть только один экстремум. Следовательно, в качестве аппроксимирующей функции следует выбрать полиноминальную функцию третьей степени (рис. 1.28).
Рис. 1.28
Откроем контекстное меню и выберем пункт Добавить линию тренда.
В диалоговом окне Линия тренда на вкладке Тип выберем Полиномиальная и установим Степень, равную трем. На вкладке Параметры установим флажки Показывать уравнение на диаграмме и Поместить на диаграмму величину достоверности аппроксимации R2.
После щелчка на кнопке ОК на диаграмме отобразится линия тренда и аналитическая запись аппроксимирующей функции
y = - 9259,3x3 + 6E + 07x2 – 1E + 11x + 7E + 13, R2 = 0,9818 (рис.1.29)
Рис. 1.29
Величина R2 близка к единице, следовательно, степень достоверности аппроксимации является высокой.