- •Старооскольский технологический институт им.А.А.Угарова
- •Шафоростова е.Н. Информационные технологии
- •Часть 1
- •220700- Автоматизация технологических процессов и производств
- •230400 – Информационные системы и технологии
- •Содержание
- •Предисловие
- •1. Порядок и правила выполнения практических работ
- •Технологии операций с векторами
- •Вычисление произведения вектора на число
- •Технологии операций с матрицами
- •Суммирование и вычитание матриц
- •Вычисление произведения матриц
- •Решение систем линейных уравнений Метод обратной матрицы
- •Метод наименьших квадратов
- •Применение технологий при решении экономических задач
- •Моделирование последовательностей и рядов Создание массива элементов числовой последовательности
- •Приближенное вычисление пределов числовых последовательностей
- •Применение последовательностей в экономических моделях
- •Применение рядов в экономических моделях
- •МоделированИе и исследованИе функций Способы задания функций
- •Технология построения графической модели функции
- •Вычисление предела функции
- •Вычисление корней функции одной переменной
- •Решение уравнений
- •Численное вычисление производной функции одного переменного
- •Вычисление локальных экстремумов функции
- •Технология получения математической модели функции по ее табличному представлению
- •Применение технологии исследования функций для решения экономических задач Кривые спроса и предложения, точка равновесия
- •Технология построения и исследования паутинной модели рынка
- •Вычисление предельных экономических показателей
- •Вычисление эластичности экономических показателей
- •Технология численного вычисления определенного интеграла
- •Технология приближенного вычисления
- •Технология точного вычисления
- •1.2. Задая для практической работы
- •1.3. Контрольные вопросы
- •Практическая работа №2 модели и технологии статического анализа
- •2.1 Теоретическое введение
- •Генерация случайной величины, распределенной по равномерному закону
- •Генерация случайных чисел в табличном процессоре
- •Вычисление числовых характеристик параметров случайных величин Вычисление числовых характеристик распределений вероятностей
- •Вычисление вероятности отдельных значений случайных величин Табличный закон распределения
- •Биноминальное распределение
- •Нормальный закон распределения
- •Технологии решения задач статистического анализа Выборочный метод и выборочная функция распределения
- •Построение выборочной функции распределения
- •Технологии вычисления основных статистических характеристик
- •Вычисление доверительного интервала для среднего значения
- •Технология проверки соответствия данных, полученных экспериментально, теоретическому распределению
- •Решение задач статистического анализа Технология решения задач дисперсионного анализа
- •Заполняемость гостиниц
- •Технологии решения задач корреляционного анализа
- •Данные наблюдений
- •Технология решения задач регрессионного анализа
- •2.2. Задания для практической работы
- •2.3.Контрольные вопросы
- •Вычисления по простым переменным ставкам
- •Вычисление накопленной суммы при реинвестировании по простым процентам
- •Дисконтирование по простым процентам
- •Финансовые расчеты по сложным процентам Вычисление наращения
- •Расчет номинальной и эффективной ставки процентов
- •Дисконтирование по сложной ставке процентов
- •Расчет стоимости ценных бумаг
- •Бз (Норма; Кпер; Выплата; Нз; Тип)
- •Бзраспис (Первичное; План)
- •Пз (Норма, Кпер, Выплата, Бс, Тип)
- •Норма (Кпер, Выплата, Пз, Бс, Тип, Предположение)
- •3.2. Задания для практической работы
- •3.3.Контрольные вопросы
- •Практическая работа №4. Численное решение уравнений средствами ms excel
- •4.1.Теоретическое введение
- •4.2. Задания для практической работы
- •4.3.Контрольные вопросы
- •Использование надстройки «Поиск решения»
- •Технология решения транспортной задачи линейного программирования
- •5.2.Задания для практической работы
- •5.3.Контрольные вопросы
- •Практическая №6 технология Решения задач дискретного программирования
- •6.1.Теоретическое введение
- •6.2. Задания для практической работы
- •6.3. Контрольные вопросы
- •Глоссарий
- •Список литературы
- •Учебное издание Шафоростова Елена Николаевна Информационные технологии
Решение уравнений
В предыдущем параграфе рассмотрена технология вычисления корней функции одной переменной. Предположим, что требуется решить уравнение х2 - 4 = 0,
т.е найти такие значения х, при которых левая часть выражения, представленная полиномом второй степени, обращается в ноль. Представим уравнение в виде функциональной зависимости у = х2 - 4.
Нетрудно догадаться, что решениями уравнения будут корни полученной функции.
Численное вычисление производной функции одного переменного
Известно, что численными приближенными методами производная функции в заданной точке может быть вычислена с использованием формулы конечных разностей. Выражение для вычисления производной функции одной переменной в точке хk записанное в конечных разностях, имеет вид
,
где Δх – очень малая конечная величина.
При достаточно малых значениях Δх, можно с приемлемой точностью получить величину производной функции в точке. Для вычисления производной в MS Excel будем использовать приведенную выше формулу. Рассмотрим технологию вычисления производной на примере.
Пример 1.18 Найти производную функции у = 2х3 + х2 в точке х=3. Заметим, что производная приведенной функции в точке х=3, вычисленная аналитическим методом, равна 60 - это значение нам понадобится для проверки результата, полученного путем вычисления численным методом.
Задачу вычисления производной в табличном процессоре можно решать двумя способами.
Решение первым способом
Введем в ячейку рабочего листа формулу правой части заданной функциональной зависимости например в ячейку В2, как показано на рисунке, делая ссылку на ячейку, где будет находиться значение х, например А2,
=2*А2^3+А2^2.
Зададим окрестность точки х=3 достаточно малого размера, например значение слева хk=2,9999999, а значение справа хk+1=3,00000001, и введем эти значения в ячейку А2 и А3 соответственно. В ячейку С2 введем формулу вычисления производной =(В3-В2)/(А3-А2).
В результате вычисления в ячейку С2 будет выведено приближенное значение производной заданной функции в точке х=3, величина которой равна 60, что соответствует результату, полученному аналитически (рис.1.24).
Рис. 1.24
Решение
вторым способом
Введем в ячейку рабочего листа А2 заданное значение аргумента, равное 3, в ячейке В2 укажем достаточно малое приращение аргумента - (1E - 9), в ячейку С2 введем формулу для вычисления производной
=(2*(А2+В2)^3+(А2+В2)^2-(2*А2^3+А2^2))/В2.
После нажатия клавиши <Enter> получим результат вычисления 60,0000.
Как видим, результат получен такой же, как и при первом способе. Приведенный второй способ является более предпочтительным в случаях, когда нужно построить таблицу значений производной функции для заданных значений аргумента.
Вычисление локальных экстремумов функции
Напомним, что функция Y=f(x) имеет экстремум при значении х = хk если производная функции в этой точке равна нулю.
Если функция f(x) непрерывна на отрезке [а, b] и имеет внутри этого отрезка локальный экстремум, то его можно найти, используя надстройку Excel Поиск решения.
Рассмотрим последовательность нахождения экстремума функции на примере
Пример 1.19 Задана неразрывная функция у = х2 + х + 2. Требуется найти ее экстремум (минимальное значение) на отрезке [-2; 2].
Решение
В ячейку A3 рабочего листа введем любое число, принадлежащее заданному отрезку, в этой ячейке будет находиться значение х.
В ячейку В3 введем формулу, определяющую заданную функциональную зависимость. Вместо переменной х в этой формуле должна быть ссылка на ячейку А3: =А3^2+A3+2.
Выполним команду меню Сервис/Поиск решения.
В открывшемся окне диалога Поиск решения в поле Установить целевую ячейку укажем адрес ячейки, содержащей формулу (В3), установим переключатель Минимальному значению, в поле Измени ячейки укажем адрес ячейки, в которой содержится переменная х-A3.
Добавим два ограничения в соответствующее поле: A3 > = - 2 и A3<=2 (рис. 1.25).
Рис. 1.25
Щелкнем на кнопке Параметры и в открывшемся диалоговом окне параметры поиска решения установим относительную погрешность вычислений и предельное число итераций.
Щелкнем на кнопке Выполнить. В ячейке А3 будет вычислено значение аргумента х функции, при котором она принимает минимальное значение, а в ячейке В3 – минимальное значение функции.
В результате выполнения вычислений в ячейке А3 будет получено значение независимой переменной, при котором функция принимает наименьшее значение -0,5, а в ячейке В3 – минимальное значение, равное 1,75.
Построим график заданной функции и убедимся, что решение уравнения найдено, верно.
Примечание. В частном случае при нахождении локального экстремума с использованием рассмотренной технологии, можно получить значение, которое не является экстремумом, а просто является минимумом или максимумом функции в заданном диапазоне изменения аргумента.
Поэтому необходима дополнительная проверка, т.е. вычисление производной функции в найденной точке.
Используя приведенную технологию численного вычисления производной функции в заданной точке, проверим, является ли найденная точка х = -0,5 точкой экстремума функции у = х2 + х + 2. Решение приведено на рисунке.
Как видно, производная в найденной точке равна нулю, следовательно, найденное значение функции является ее экстремальным значением.
Пример 1.20 Требуется найти значения аргумента в диапазоне [-1; 1], при которых функция у = х2 + х + 2 имеет экстремумы.
Решение
Табулируем заданную функцию с шагом 0,2.
Применяя второй из приведенных способов вычисления производной, вычислим значения функции у = f(x + dx).
Вычислим значения производной при каждом табличном значении аргумента.
Анализируя полученные значения производных функции в точках, находим, что производная меняет знак в интервале значений аргумента (-0,6;-0,4), следовательно, на этом интервале есть точка экстремума. Кроме того, заметим, что знак производной меняется с минуса на плюс, следовательно, точка экстремума является минимумом функции.
Применяя инструмент Подбор параметра или Поиск решения для решения уравнения Y(x) = 0
Рис. 1.26
относительно х, вычислим точное значение аргумента, при котором исходная функция принимает экстре малыше значение (-0,5) (рис. 1.26).
Полученное значение производной исследуемой функции в точке х =-0,5 равно нулю, следовательно, в этой точке функция имеет экстремум.
