- •1 Предмет и задачи геодезии в строительстве.
- •2 Понятие о форме и размерах Земли
- •3 Прямоугольная система координат Гаусса-Крюгера. Система высот.
- •4 Азимуты и дирекциониые углы, связь между ними. Сближение меридианов. Магнитное склонение. Связь между истинными азимутами, дирекционными углами магнитными азимутами.
- •5. Масштабы. Точность масштабов.
- •6. Топографические планы и карты. Разграфка и номенклатура.
- •7. Рельеф земной поверхности и способы его изображения на планах и карте. Свойства горизонталей.
- •8. Общие сведения из теории ошибок измерений. Основные понятия о точности измерений. Средняя квадратическая, предельная и относительные ошибки измерений.
- •9. Принципы измерения углов. Схема и устройство теодолита 4т30п. Особенности устройства точных и электронных теодолитов (4t15, 3т5кп и еТh50).
- •10. Штативы, визирные цели.
- •11. Уровни, зрительные трубы, отсчетные приспособления теодолитов.
- •12. Поверки и юстировки теодолита 4т30 и зт5кп.
- •9.2 Юстировка теодолита 3т5кп
- •13. Способы измерения горизонтальных и вертикальных углов. Источники погрешностей влияющих на точность измерения углов.
- •14. Приборы для непосредственного измерения расстояний (ленты и рулетки). Компарирование. Источники погрешностей, влияющие на точность линейных измерений.
- •15 Порядок измерения расстояний с помощью светодальномера 2ст10. Лазерные рулетки (ручные дальномеры disto lite 5).
- •16. Особенности метрологического обслуживания геодезических приборов.
- •17.Государственные геодезические плановые и высотные сети и их научное и практическое значение. Наземные и подземные знаки.
- •18.Виды топографических съемок. Сущность горизонтальной съемки. Состав и порядок полевых работ.
- •19. Тахеометрическая съемка. Вывод формулы тригонометрического нивелирования. Порядок работы на станции при тахеометрической съемке (4т30, зт5кп или 2Та5, Trimble r3).
- •20 Понятие о аэрогеодезии и наземной фототеодолитной съемке.
- •21.Наземная фототеодолитная съемка и ее применение в изысканиях, при проектировании, возведении и эксплуатации сооружений.
- •22.Сущность нивелирования. Виды нивелирования. Способы определения превышений и высот при геометрическом способе нивелирования.
- •23.Классификация нивелиров. Устройство нивелиров н3, нзк. 3h5л и (2h10kл). Особенности устройства цифровых и лазерных нивелиров DiNi 12, DiNi22 и sp30 (ротационный).
- •24. Гидростатическое нивелирование. Микронивелирование.
- •25. Поверки и юстировки нивелиров н3 и нзк.
- •26. Порядок выполнения полевых работ при прокладке нивелирного хода. Источники погрешностей при геометрическом нивелировании.
- •27. Уравнивание замкнутых и разомкнутых нивелирных ходов
- •28. Способы нивелирования поверхности. Порядок обработки результатов полевых измерений и построения плана.
- •29. Общие сведения об инженерных изысканиях и их виды. Требования к инженерно- геодезическим изысканиям на различных стадиях проектирования зданий и сооружений
- •30. Состав и порядок выполнения геодезических работ при изысканиях линейных сооружений.
- •31. Инженерно-геодезическое обеспечение других видов изысканий: инженерно- геологических, гидрологических.
- •32. Общие принципы разбивочных работ. Требования к точности разбивочных работ.
- •33. Основные геодезические работы на строительной площадке. Строительная сетка.
- •34. Методы подготовки геодезических данных для выноса проекта горизонтальной планировки в натуру.
- •35. Построение на местности точки с заданной проектной отметкой. Построение проектной наклонной плоскости.
- •36. Вынос на местность точки способом полярных и прямоугольных координат. Оценка точности.
- •37. Построение на местности проектного угла и проектной длины.
- •38. Вынос на местность точек способом угловой, линейной и створной засечки.
- •39. Способы построения отвесного направления и отвесной плоскости.
- •40. Разбивка котлованов зданий и сооружений.
- •41. Разбивка основных осей от существующих капитальных зданий, красных линий, с пунктов строительной сетки и точек теодолитного хода. Контроль разбивки.
- •42. Разбивочные работы при устройстве фундаментов под железобетонные и металлические колонны.
- •43. Геодезические работы при разбивке фундаментов на сваях.
- •44. Операционный геодезический контроль возведения подземной части зданий и сооружений. Исполнительные съемки.
- •45. Построение плановой и высотной опорных сетей на исходном горизонте.
- •46. Проецирование осей точек и передача отметок с исходного на монтажные горизонты.
- •47. Установка железобетонных и металлических колонн в проектное положение и их выверка.
- •48. Выверка колонн, панелей, подкрановых балок и путей, ферм и т. П.
- •49. Операционный геодезический контроль строительно-монтажных работ.
- •50. Исполнительные съемки. Геодезическая исполнительная документация.
- •51. Особенности составления исполнительных планов подземных и надземных инженерных сетей.
- •52. Геодезические работы при монтаже и эксплуатации технологического оборудования.
- •53. Геодезические работы при монтаже подкрановых путей.
- •54. Геодезические работы при эксплуатации зданий и сооружений.
- •55. Методы наблюдений за смещениями сооружений в плане и по высоте. Определение кренов труб и сооружений башенного типа.
- •56. Понятие о спутниковых методах измерений в инженерно-геодезических работах. Понятие о лазерном сканировании.
13. Способы измерения горизонтальных и вертикальных углов. Источники погрешностей влияющих на точность измерения углов.
Перед измерением угла необходимо привести теодолит в рабочее положение, то есть выполнить три операции: центрирование, горизонтирование (нивелирование) и установку зрительной трубы.
Центрирование теодолита − это установка оси вращения алидады над вершиной измеряемого угла;
операция выполняется с помощью отвеса, подвешиваемого на крючок станового винта, или с помощью оптического центрира (если последний имеется у теодолита) Горизонтирование (нивелирование) теодолита − установка оси вращения алидады в вертикальное положение (соответственно;
плоскости лимба горизонтального круга − в горизонтальное);
операция выполняется с помощью подъемных винтов и уровня на алидаде горизонтального круга.
Установка трубы – это установка трубы по глазу и по предмету;
операция выполняется с помощью подвижного окулярного кольца (установка по глазу – фокусирование сетки нитей) и винта фокусировки трубы на предмет.
Измерение горизонтальных углов выполняется строго по методике, соответствующей способу измерения.
Известно несколько способов измерения горизонтальных углов:
способ отдельного угла (способ приемов), способ круговых приемов, способ во всех комбинациях и др.
При измерении углов в теодолитных ходах используется в основном первый способ.
Измерение отдельного угла складывается из следующих действий:
1 – наведение трубы на точку, фиксирующую направление первой стороны угла, при « круге лево « (КЛ), взятие отсчета L 1;2 – поворот алидады по часовой стрелке и наведение трубы на точку, фиксирующую направление второй стороны угла;
взятие отсчет L 2;3 − вычисление угла при КЛ:
βл = L2 – L1; 4 – перестановка лимба на 1º - 2º для теодолитов с односторонним отсчитыванием;5 – переведение трубы через зенит и наведение ее на точку, фиксирующей направление первой стороны угла, при « круге право «(КП), взятие отсчета R 1;6 – поворот алидады по ходу часовой стрелки и наведение трубы на точку, фиксирующую направление второй стороны угла, при « круге право «, взятие отсчета R 2;
7 – вычисление угла при КП:
β п = R 2 – R 1;8 − при выполнении условия │ β л – β п │≤ 1.5t, где t – точность теодолита, вычисляется среднее значение угла:
β ср = 0.5(β л + β п).
Измерение угла при одном положении круга (КЛ или КП) составляет один полуприем;
полный цикл измерения угла при двух положениях круга составляет один прием.
Измерение вертикальных углов.
Вертикальный угол – это плоский угол, лежащий в вертикальной плоскости.
К вертикальным углам относятся угол наклона и зенитное расстояние Угол между горизонтальной плоскостью и направлением линии местности называется углом наклона и обозначается буквой ν.
Углы наклона бывают положительными и отрицательными.
Угол между вертикальным направлением и направлением линии местности называется зенитным расстоянием и обозначается буквой Z.
Зенитное расстояние всегда положительно.
Угол наклона и зенитное расстояние одного направления связаны соотношением:
14. Приборы для непосредственного измерения расстояний (ленты и рулетки). Компарирование. Источники погрешностей, влияющие на точность линейных измерений.
Различают непосредственное измерение расстояний и измерение расстояний с помощью специальных приборов, называемых дальномерами. Непосредственное измерение выполняют инварными проволоками, мерными лентами и рулетками.
Инварные проволоки позволяют измерять расстояние с наибольшей точностью; относительная ошибка измерения может достигать одной миллионной; это означает, что расстояние в 1 км измерено с ошибкой всего 1 мм. Инвар - это сплав, содержащий 64% железа и 36% никеля; он отличается малым коэффицентом линейного расширения α = 0.5 * 10-6 (для сравнения: сталь имеет α = 12 * 10-6).
Мерные ленты обеспечивают точность измерений около 1 / 2 000, т.е. для расстояния в 1 км ошибка может достигать 50 см. Мерная лента - это стальная лента шириной от 10 до 20 мм и толщиной 0.4 - 0.5 мм. Мерные ленты имеют длину 20, 24 и 50 м. Целые метры отмечены пластинами с выбитыми на них номерами метров, полуметры отмечены круглыми заклепками, дециметры - круглыми отверстиями диаметром 2 мм.
Фактическая длина ленты или проволоки обычно отличается от ее номинальной длины на величину Δl. Фактическую длину ленты определяют, сравнивая ее с эталонной мерой. Процесс сравнения длины мерного прибора с эталоном называется компарированием, а установка, на которой производится компарирование, - компаратором.
Согласно ГОСТ 7502 - 80 допускается отклонение фактической длины новой ленты 2 мм для 20- и 30-метровых лент и 3 мм для 50-метровых. Вследствие износа фактическая длина ленты изменяется, поэтому компарирование производится каждый раз перед началом полевых работ.
Длина стальных рулеток бывает 20, 30, 50, 75 и 100 м. Точность измерения расстояния стальными рулетками зависит от методики измерений и колеблется от 1/2 000 до 1/10 000.
Мерные ленты и рулетки перед измерением ими линий должны быть проверены. Данная проверка называется компарированием и состоит в установлении действительной длины мерного прибора путем его сравнения с образцовым прибором, длина которого точно известна.
Для компарирования штриховых лент за образцовый мерный прибор принимают одну из лент, имеющихся на производстве, длину которой выверяют в лаборатории Государственного надзора за стандартами и измерительной техникой Государственного комитета стандартов РФ и пользуются ею при сравнении с рабочими лентами. Компарирование шкаловых лент производят на специальных приборах, называемых стационарными компараторами.
Простейший способ компарирования штриховых лент состоит в следующем. На горизонтальной поверхности, например, на полу, укладывают образцовую ленту. Рядом с ней кладут проверяемую ленту так, чтобы их края касались друг друга, а нулевые штрихи совмещались. Жестко закрепив концы с нулевыми штрихами, ленты натягивают с одинаковой силой и измеряют миллиметровой линейкой величину несовпадения конечных штрихов на других концах лент. Данная величина показывает на сколько миллиметров рабочая лента короче или длиннее образцовой и называется поправкой за компарирование Δℓ.
Длина проверяемой 20-метровой ленты не должна отличаться от длины образцовой ленты более чем на ±2 мм. В противном случае в результаты измерения линий вводят поправки. При этом, выполняя измерения линий рабочей лентой, полагают, что её длина равняется 20 м. Поправки определяют по формуле
г
де
D – длина измеренной линии.
Поправку вычитают из результатов измерения, когда рабочая лента короче образцовой, и прибавляют, когда она длиннее.
Измерение расстояний лентой выполняется двумя мерщиками. Передний берет 5 шпилек, задний совмещает конец ленты в начальной точке, убедившись в том, что подписи метровых делений возрастают от заднего конца ленты к переднему. Затем задний мерщик направляет переднего, который, встряхивая и натягивая ленту, помещает ее в створ линии, обозначенный вехами, закрепляет передний конец натянутой ленты шпилькой, поставленной вертикально. Для исключения сдвижки ленты и удобства ее ориентации задний конец ленты прижимают ногой к земле.
Перед перемещением (протягиванием) ленты вперед на ее длину сначала задний мерщик вынимает свою шпильку, а затем передний снимает ленту со своей шпильки, которая остается в земле и от которой измерение продолжается.
На точность измерения линий влияют следующие погрешности и условия измерений:
1. Укладка ленты не в створе измеряемой линии вызывает одностороннюю систематическую погрешность, которая может быть уменьшена установкой вешек через каждые 80 - 120 м;
2. Прогиб ленты, для устранения которого ленту встряхивают и натягивают с силой 98 Н;
3. Погрешности в длине самой ленты, определяемые при компарировании (сравнении с эталоном) и учитываемые при измерении;
4. Углы наклона линии к горизонту превышающие 2, которые учитываются при вычислении горизонтального проложения (d = Dcosν) и должны быть измерены эклиметром;
5. Разность температур при измерении t и компарировании tк превышает 8o, и поэтому в длину линии D вводят поправку за температуру
ΔDt= α(t - tк)D,
где α - коэффициент линейного расширения материала мерного прибора (для стали α = 12.5. 10-6);
Кроме перечисленных систематических, на точность линейных измерений влияют и случайные погрешности, связанные с отсчитыванием по шкале ленты, фиксацией концов ленты, ее сдвижка при натяжении, неровностями поверхности вдоль измеряемой линии и другие факторы.
К грубым погрешностям на учебной геодезической практике следует отнести следующие:
а) при вычислении длины линии D = nl+r, неправильно определено число целых отложений ленты длиной l в измеряемой линии. Число отложений n должно соответствовать количеству шпилек у заднего мерщика. Неправильно измерен остаток r - расстояние от заднего нулевого штриха до центра знака конечной точки;
б) не выполнен контроль измеренного расстояния D, который предусматривает повторное измерение линии в обратном направлении. Расхождение ΔD прямого и обратного результатов допускается не более (1:2000). D.
