
- •Утверждено на заседании кафедры “Физика” Протокол № 6 от 06.02.07
- •Ответственный за выпуск г.О. Татарченко, доц., к.Т.Н.
- •Содержание
- •Введение.
- •1. Тема: «изучение электронного осциллографа»
- •I. 1. Сформулируйте закон Кулона. Как взаимодействуют разноименно и одноименно заряженные частицы?
- •I. 2. Что называют напряженностью электростатического поля? Чем порождается и обнаруживается электростатическое поле? Как направлены силовые линии вектора напряженности электростатического поля?
- •I. 3. Покажите, как графически изображают электростатическое поле? Принцип суперпозиции электростатических полей.
- •I. 4. Что называется потенциалом, разностью потенциалов электростатического поля? Связь между напряженностью и потенциалом электростатического поля.
- •I. 5. Чему равна емкость уединенного проводника, шара?
- •I. 6. Чему равна энергия заряженного конденсатора?
- •I. 7. Для чего предназначен осциллограф? Что называется чувствительностью осциллографа?
- •I. 8. Опишите устройство электронно-лучевой трубки.
- •II. 9. Объясните принцип действия электронного осциллографа.
- •II. 10. Какие существуют органы управления электронным осциллографом?
- •II. 11. Приведите принципиальную схему установки и объясните, как в лабораторной работе определяли чувствительность электронного осциллографа.
- •II. 12. Поток вектора напряженности электростатического поля. Сформулируйте теорему Гаусса для электростатического поля.
- •II. 13. Чему равна работа электростатического поля при перемещении заряда? Что такое циркуляция вектора ?
- •II. 14. Что называется вектором электрического смещения?
- •II. 15. Как рассчитывается электроемкость плоского конденсатора, батареи конденсаторов при последовательном и параллельном соединении?
- •III. 16. Покажите и рассчитайте поле равномерно заряженной бесконечной плоскости, двух бесконечных параллельных разноименно заряженных плоскостей.
- •III. Задачи
- •2. Тема: «определение горизонтальной составляющей напряженности магнитного поля земли».
- •I. 1. Какое поле называется магнитным? Чем оно порождается и какова его важнейшая особенность? Как исследуется магнитное поле и как определяется ориентация контура с током в пространстве?
- •I. 2. Почему рамка с током ориентируется в пространстве? Чем определяется вращающий момент сил? Что называется магнитной индукцией? Как изображают силовые линии магнитного поля?
- •I. 3. Какие магнитные поля характеризует вектор магнитной индукции ? Как связана эта величина с напряженностью магнитного поля?
- •I. 4. Закон Био – Савара – Лапласа и его применение к расчету магнитных полей.
- •I. 5. Сформулируйте принцип суперпозиции для вектора . Приведите примеры.
- •I. 6. Что называется явлением электромагнитной индукции? Какие токи называются индукционными? Закон Фарадея, правило Ленца.
- •I. 7. Какое явление называется самоиндукцией? Взаимной индукцией? Что такое индуктивность контура?
- •I. 8. Опишите в общих чертах строение магнитного поля Земли.
- •I. 9. Объясните действие магнитного поля Земли на магнитную стрелку. Почему мы можем в работе измерить только горизонтальную составляющую напряженности магнитного поля Земли?
- •I. 10. Опишите принципиальную схему установки и ход выполнения лабораторной работы.
- •II. 11. Сформулируйте закон Ампера. Покажите взаимодействие параллельных токов.
- •Модуль силы Ампера вычисляется по формуле
- •II. 12. Каково действие магнитного поля (силы Лоренца) и электромагнитного с магнитным на движущийся заряд?
- •II. 13. Каково движение заряженных частиц в магнитном поле под действием силы Лоренца?
- •II. 14. Что называется циркуляцией вектора магнитного поля в вакууме? Закон полного тока для магнитного поля в вакууме (теорема о циркуляции вектора ).
- •II. 15. Что называется потоком вектора магнитной индукции? Сформулируйте теорему Гаусса для поля .
- •II. 16. Чему равна работа по перемещению проводника с током в магнитном поле?
- •II. 17. Объясните, почему прибор называется тангенс-гальванометром? Поясните на примере тангенс-гальванометра принцип суперпозиции магнитных полей. Выведите расчетную формулу.
- •III. Задачи
- •3. Тема: «определение скорости звука методом резонанса».
- •I. 1. Что называется колебаниями? Гармонические колебания, их основные характеристики.
- •I. 2. Запишите уравнение гармонических колебаний, изобразите их график. Что называется фазой, амплитудой, периодом колебаний?
- •I. 3. Что называется волновым процессом (волной)? Как распространяются волны? Основные свойства волн?
- •I. 4. Какие типы волн существуют в природе, технике? Какие волны называются упругими? Дайте определение продольных и поперечных упругих волн.
- •I. 5. Какие упругие волны называются гармоническими? График упругой волны, распространяющейся вдоль оси х. Что называют длиной волны, волновым фронтом?
- •I. 6. Что называется волновой поверхностью? Какие волны называются плоскими, сферическими? Запишите их уравнения.
- •I. 7. Что называется интерференцией волн? Объясните понятие когерентности, разности хода волн, условия max и min при интерференции волн.
- •I. 8. Какие волны называются звуковыми? Что называется интенсивностью звука? Покажите диапазон частот слышимости для человеческого уха с учетом интенсивности волн.
- •I. 9. Опишите устройство лабораторной установки по определению скорости звука методом резонанса.
- •I. 10. Что такое резонанс? Поясните явление акустического резонанса в лабораторной работе.
- •II. 11. Дайте определения таких характеристик волн как волновое число, фазовая скорость, понятия дисперсии волн. Для характеристики волн используется волновое число
- •II. 12. Запишите уравнение бегущей волны, волновое уравнение.
- •II. 13. Сформулируйте принцип суперпозиции волн. Что называется волновым пакетом, групповой скоростью?
- •II. 14. Какие волны называются стоячими? Как они образуются? Уравнение стоячей волны.
- •II. 15. Что называется громкостью, высотой, тембром звука?
- •II. 16. Как распространяется звуковая волна? Скорость распространения звука в газе и ее зависимость от температуры и плотности газа.
- •II. 17. Объясните физическую сущность определения скорости звука методом резонанса.
- •III. Задачи
- •4. Тема: «определение длины световой волны с помощью дифракционной решетки».
- •I. 1. Что называется дифракцией? Какие волны называются когерентными, монохроматическими?
- •I. 2. Сформулируйте принцип Гюйгенса. Объясните метод зон Френеля.
- •I. 3. Что такое дифракционная решетка? Покажите и объясните дифракцию на дифракционной решетке.
- •I. 4. Объясните дифракцию света на пространственных решетках.
- •II. 5. Покажите и объясните дифракцию на круглом отверстии и диске.
- •II. 6. Покажите и объясните дифракцию на одной щели (дифракция Фраунгофера).
- •II. 7. Объясните метод определения длины световой волны в лабораторной работе.
- •II. 8. Объясните дифракцию на кристаллах. Формула Вульфа-Брэггов
- •II. 9. Сформулируйте критерий Релея-Джинса для разрешающей способности точечных источников. Объясните разрешающую способность дифракционной решетки.
- •II. 10. Разрешающая способность дифракционной решетки.
- •II. 11. Что называется дисперсией света? Чем отличается дисперсия от явления дифракции? Что такое показатель преломления среды?
- •III. Задачи
- •Список литературы
II. 13. Чему равна работа электростатического поля при перемещении заряда? Что такое циркуляция вектора ?
Работа
при перемещении заряда Q0
из точки 1 в точку 2 находится (рис. 1.13)
из определения работы электростатического
поля
и закона Кулона
,
тогда
(1.14)
Рис. 1.13
Работа электростатического поля не зависит от траектории движения, а определяется только положениями начальной 1 и конечной 2 точек. Следовательно, электростатическое поле точечного заряда является потенциальным, а электростатические силы – консервативными.
Работа электростатического поля, совершаемая при перемещении электрического заряда во внешнем электростатическом поле по любому замкнутому пути , равна нулю, т. е.
Если
в качестве заряда, переносимого в
электростатическом поле, взять единичный
точечный положительный заряд, то
элементарная работа сил поля на пути
равна
,
где
- проекция вектора Е на направление
элементарного перемещения.
(1.15)
Интеграл
называется циркуляцией вектора
напряженности. Циркуляция вектора
напряженности электростатического
поля вдоль любого замкнутого контура
равна нулю. Силовое поле, обладающее
таким свойством, называется потенциальным.
Из обращения в нуль циркуляции вектора
следует, что линии напряженности
электростатического поля не могут быть
замкнутыми, они начинаются и кончаются
на зарядах (соответственно на положительных
или отрицательных) или же уходят в
бесконечность.
Работа сил поля при перемещении заряда Q0 из точки 1 в точку 2 может быть записана также в виде
(1.16)
II. 14. Что называется вектором электрического смещения?
Напряженность
электростатического поля зависит от
свойств среды: в однородной изотропной
среде напряженность поля
обратно пропорциональна
.
Вектор напряженности
,
переходя через границу диэлектриков,
претерпевает скачкообразное изменение,
создавая тем самым неудобства при
расчетах электростатических полей.
Поэтому оказалось необходимым помимо
вектора напряженности характеризовать
поле еще вектором электрического
смещения, который для электрически
изотропной среды, по определению равен
(1.17)
где -диэлектрическая проницаемость среды, показывающая как слоем диэлектрика ослабляется поле по сравнению с вакуумом.
Линии
вектора
могут начинаться
и заканчиваться на любых зарядах –
свободных и связанных, в то время как
линии вектора
–
только на свободных зарядах. Через
области поля, где находятся связанные
заряды, линии вектора
проходят не прерываясь.
II. 15. Как рассчитывается электроемкость плоского конденсатора, батареи конденсаторов при последовательном и параллельном соединении?
Емкость плоского конденсатора:
Рис. 1.14
Конденсатор состоит из двух проводников (обкладок), разделенных диэлектриком (рис. 1.14). На емкость конденсатора не должны оказывать влияния окружающие тела, поэтому проводникам придают такую форму, чтобы поле, создаваемое накапливаемыми зарядами, было сосредоточенно в узком зазоре между обкладками конденсатора. Этому условию удовлетворяют: 1)две плоские пластины; 2) два коаксиальных цилиндра; 3) две концентрические сферы. Поэтому в зависимости от формы обкладок конденсаторы делятся на плоские, цилиндрические и сферические.
Так
как поле сосредоточено внутри конденсатора,
то линии напряженности начинаются на
одной обкладке и заканчиваются на
другой, поэтому свободные заряды,
возникающие на разных обкладках, являются
равными по модулю разноименными зарядами.
Под емкостью конденсатора понимается
физическая величина, равная отношению
заряда Q,
накопленного в конденсаторе на одной
из обкладок , к разности потенциалов
между его обкладками:
(1.18)
1.
Параллельное соединение конденсаторов
(рис. 1.15). У параллельно соединенных
конденсаторов разность потенциалов на
обкладках конденсаторов одинакова и
равна
.
Если емкости отдельных конденсаторов
С1,
С2,…,Сn,
то, их заряды равны
Рис. 1.15
,
…………………………
а заряд батареи конденсаторов
Полная емкость батареи
(1.19)
При параллельном соединении конденсаторов она равна сумме емкостей отдельных конденсаторов.
2. Последовательное соединение конденсаторов (рис. 1.16).
У последовательно соединенных конденсаторов заряды всех обкладок равны по модулю, а разность потенциалов на зажимах батареи
Рис. 1.16
где
для любого из рассматриваемых конденсаторов
.
С другой стороны,
откуда
(1.20)
При последовательном соединении конденсаторов суммируются величины, обратные емкостям. Таким образом, при последовательном соединении конденсаторов результирующая емкость С всегда меньше наименьшей емкости, используемой в батарее.