
- •Утверждено на заседании кафедры “Физика” Протокол № 6 от 06.02.07
- •Ответственный за выпуск г.О. Татарченко, доц., к.Т.Н.
- •Содержание
- •Введение.
- •1. Тема: «изучение электронного осциллографа»
- •I. 1. Сформулируйте закон Кулона. Как взаимодействуют разноименно и одноименно заряженные частицы?
- •I. 2. Что называют напряженностью электростатического поля? Чем порождается и обнаруживается электростатическое поле? Как направлены силовые линии вектора напряженности электростатического поля?
- •I. 3. Покажите, как графически изображают электростатическое поле? Принцип суперпозиции электростатических полей.
- •I. 4. Что называется потенциалом, разностью потенциалов электростатического поля? Связь между напряженностью и потенциалом электростатического поля.
- •I. 5. Чему равна емкость уединенного проводника, шара?
- •I. 6. Чему равна энергия заряженного конденсатора?
- •I. 7. Для чего предназначен осциллограф? Что называется чувствительностью осциллографа?
- •I. 8. Опишите устройство электронно-лучевой трубки.
- •II. 9. Объясните принцип действия электронного осциллографа.
- •II. 10. Какие существуют органы управления электронным осциллографом?
- •II. 11. Приведите принципиальную схему установки и объясните, как в лабораторной работе определяли чувствительность электронного осциллографа.
- •II. 12. Поток вектора напряженности электростатического поля. Сформулируйте теорему Гаусса для электростатического поля.
- •II. 13. Чему равна работа электростатического поля при перемещении заряда? Что такое циркуляция вектора ?
- •II. 14. Что называется вектором электрического смещения?
- •II. 15. Как рассчитывается электроемкость плоского конденсатора, батареи конденсаторов при последовательном и параллельном соединении?
- •III. 16. Покажите и рассчитайте поле равномерно заряженной бесконечной плоскости, двух бесконечных параллельных разноименно заряженных плоскостей.
- •III. Задачи
- •2. Тема: «определение горизонтальной составляющей напряженности магнитного поля земли».
- •I. 1. Какое поле называется магнитным? Чем оно порождается и какова его важнейшая особенность? Как исследуется магнитное поле и как определяется ориентация контура с током в пространстве?
- •I. 2. Почему рамка с током ориентируется в пространстве? Чем определяется вращающий момент сил? Что называется магнитной индукцией? Как изображают силовые линии магнитного поля?
- •I. 3. Какие магнитные поля характеризует вектор магнитной индукции ? Как связана эта величина с напряженностью магнитного поля?
- •I. 4. Закон Био – Савара – Лапласа и его применение к расчету магнитных полей.
- •I. 5. Сформулируйте принцип суперпозиции для вектора . Приведите примеры.
- •I. 6. Что называется явлением электромагнитной индукции? Какие токи называются индукционными? Закон Фарадея, правило Ленца.
- •I. 7. Какое явление называется самоиндукцией? Взаимной индукцией? Что такое индуктивность контура?
- •I. 8. Опишите в общих чертах строение магнитного поля Земли.
- •I. 9. Объясните действие магнитного поля Земли на магнитную стрелку. Почему мы можем в работе измерить только горизонтальную составляющую напряженности магнитного поля Земли?
- •I. 10. Опишите принципиальную схему установки и ход выполнения лабораторной работы.
- •II. 11. Сформулируйте закон Ампера. Покажите взаимодействие параллельных токов.
- •Модуль силы Ампера вычисляется по формуле
- •II. 12. Каково действие магнитного поля (силы Лоренца) и электромагнитного с магнитным на движущийся заряд?
- •II. 13. Каково движение заряженных частиц в магнитном поле под действием силы Лоренца?
- •II. 14. Что называется циркуляцией вектора магнитного поля в вакууме? Закон полного тока для магнитного поля в вакууме (теорема о циркуляции вектора ).
- •II. 15. Что называется потоком вектора магнитной индукции? Сформулируйте теорему Гаусса для поля .
- •II. 16. Чему равна работа по перемещению проводника с током в магнитном поле?
- •II. 17. Объясните, почему прибор называется тангенс-гальванометром? Поясните на примере тангенс-гальванометра принцип суперпозиции магнитных полей. Выведите расчетную формулу.
- •III. Задачи
- •3. Тема: «определение скорости звука методом резонанса».
- •I. 1. Что называется колебаниями? Гармонические колебания, их основные характеристики.
- •I. 2. Запишите уравнение гармонических колебаний, изобразите их график. Что называется фазой, амплитудой, периодом колебаний?
- •I. 3. Что называется волновым процессом (волной)? Как распространяются волны? Основные свойства волн?
- •I. 4. Какие типы волн существуют в природе, технике? Какие волны называются упругими? Дайте определение продольных и поперечных упругих волн.
- •I. 5. Какие упругие волны называются гармоническими? График упругой волны, распространяющейся вдоль оси х. Что называют длиной волны, волновым фронтом?
- •I. 6. Что называется волновой поверхностью? Какие волны называются плоскими, сферическими? Запишите их уравнения.
- •I. 7. Что называется интерференцией волн? Объясните понятие когерентности, разности хода волн, условия max и min при интерференции волн.
- •I. 8. Какие волны называются звуковыми? Что называется интенсивностью звука? Покажите диапазон частот слышимости для человеческого уха с учетом интенсивности волн.
- •I. 9. Опишите устройство лабораторной установки по определению скорости звука методом резонанса.
- •I. 10. Что такое резонанс? Поясните явление акустического резонанса в лабораторной работе.
- •II. 11. Дайте определения таких характеристик волн как волновое число, фазовая скорость, понятия дисперсии волн. Для характеристики волн используется волновое число
- •II. 12. Запишите уравнение бегущей волны, волновое уравнение.
- •II. 13. Сформулируйте принцип суперпозиции волн. Что называется волновым пакетом, групповой скоростью?
- •II. 14. Какие волны называются стоячими? Как они образуются? Уравнение стоячей волны.
- •II. 15. Что называется громкостью, высотой, тембром звука?
- •II. 16. Как распространяется звуковая волна? Скорость распространения звука в газе и ее зависимость от температуры и плотности газа.
- •II. 17. Объясните физическую сущность определения скорости звука методом резонанса.
- •III. Задачи
- •4. Тема: «определение длины световой волны с помощью дифракционной решетки».
- •I. 1. Что называется дифракцией? Какие волны называются когерентными, монохроматическими?
- •I. 2. Сформулируйте принцип Гюйгенса. Объясните метод зон Френеля.
- •I. 3. Что такое дифракционная решетка? Покажите и объясните дифракцию на дифракционной решетке.
- •I. 4. Объясните дифракцию света на пространственных решетках.
- •II. 5. Покажите и объясните дифракцию на круглом отверстии и диске.
- •II. 6. Покажите и объясните дифракцию на одной щели (дифракция Фраунгофера).
- •II. 7. Объясните метод определения длины световой волны в лабораторной работе.
- •II. 8. Объясните дифракцию на кристаллах. Формула Вульфа-Брэггов
- •II. 9. Сформулируйте критерий Релея-Джинса для разрешающей способности точечных источников. Объясните разрешающую способность дифракционной решетки.
- •II. 10. Разрешающая способность дифракционной решетки.
- •II. 11. Что называется дисперсией света? Чем отличается дисперсия от явления дифракции? Что такое показатель преломления среды?
- •III. Задачи
- •Список литературы
II. 15. Что называется громкостью, высотой, тембром звука?
Если интенсивность звука является величиной, объективно характеризующей волновой процесс, то субъективной характеристикой звука, связанной с его интенсивностью, является громкость звука, зависящая от частоты. Согласно физиологическому закону Вебера – Фехнера, с ростом интенсивности звука громкость возрастает по логарифмическому закону. На этом основании вводят объективную оценку громкости звука по измеренному значению его интенсивности:
L = lg (I/I0),
где I0 – интенсивность звука на пороге слышимости, принимаемая для всех звуков равной 10-12 Вт/м2. Величина L называется уровнем интенсивности звука и выражается в белах (в честь изобретателя телефона Белла). Обычно пользуются единицами в 10 раз меньшими - децибелами (дБ).
Физиологической характеристикой звука является уровень громкости, который выражается в фонах (фон). Громкость для звука в 1000 Гц (частота стандартного чистого тона) равна 1 фон, если его уровень интенсивности равен 1 дБ. Например, шум в вагоне метро при большой скорости соответствует ≈ 90 фон, а шепот на расстоянии 1 м – ≈ 20 фон.
Реальный звук является наложением гармонических колебаний с большим набором частот, т.е. звук обладает акустическим спектром, который может быть сплошным (в некотором интервале присутствуют колебания всех частот) и линейчатым (присутствуют колебания отдельных друг от друга определенных частот).
Звук характеризуется, помимо громкости, еще высотой и тембром. Высота звука – качество звука, определяемое человеком субъективно на слух и зависящее от частоты звука. С ростом частоты высота звука увеличивается, т.е. звук становится «выше». Характер акустического спектра и распределения энергии между определенными частотами определяет своеобразие звукового ощущения, называемое тембром звука. Так, различные певцы, берущие одну и ту же ноту, имеют различный акустический спектр, т.е. их голоса имеют различный тембр.
II. 16. Как распространяется звуковая волна? Скорость распространения звука в газе и ее зависимость от температуры и плотности газа.
Источником звука может быть всякое тело, колеблющееся в упругой среде со звуковой частотой (например, в струнных инструментах источником звука является струна, соединенная с корпусом инструмента).
Совершая колебания, тело вызывает колебания прилегающих к нему частиц среды с такой же частотой. Состояние колебательного движения последовательно передается к все более удаленным от тела частицам среды, т.е. в среде распространяется волна с частотой колебаний, равной частоте ее источника, и с определенной скоростью, зависящей от плотности и упругих свойств среды. Скорость распространения звуковых волн в газах вычисляется по формуле
(3.10)
где
R
– молярная газовая постоянная,
–
молярная масса газа, γ = Ср/Сv
– отношение молярных теплоемкостей
газа при постоянных давлении и объеме,
Т – термодинамическая температура. Из
формулы (3.10) вытекает, что скорость звука
в газе не зависит от давления p
газа, но возрастает с повышением
температуры. Чем больше молярная масса
газа, тем меньше в нем скорость звука.
Например, при Т = 273 К скорость звука в
воздухе (
кг/моль)
U=
331 м/с, в водороде (
кг/моль) U=
1260 м/с.
Молярная масса равна:
Где
- количество вещества, V
– объем газа,
- его плотность.
тогда