Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
3_6 Приёмы вычисления сумм, произведений и экст...doc
Скачиваний:
8
Добавлен:
16.11.2019
Размер:
110.59 Кб
Скачать

Пример 3.6.2 выполнения задания

Известно, что функция на интервале значений аргумента от –1,6 до 2 имеет несколько точек перегиба, в которых значение хотя бы одной производной больше -1·1030. Требуется найти точку перегиба с максимальным значением производной, изменяя аргумент с шагом 0,001. Вывести найденные приближенные значения производной и соответствующей точки перегиба.

program Project2;

{$APPTYPE CONSOLE}

uses

SysUtils;

const

dX=0.001;

var

Xmax,dYmax,X,dYL,dY,dYR:Extended;

begin

X:=-1.6;

//Приращение функции в точке слева от текущей

dYL:= Sin(5*X)*Sin(X)*Sqr(X)/(X-3)

-Sin(5*(X+dX))*Sin(X+dX)*Sqr(X+dX)/(X+dX-3);

X:=X+dX;

//Приращение функции в текущей точке

dY:= Sin(5*X)*Sin(X)*Sqr(X)/(X-3)

-Sin(5*(X+dX))*Sin(X+dX)*Sqr(X+dX)/(X+dX-3);

Xmax:=X; dYmax:=-1e30;

repeat

X:=X+dX;

//Приращение функции в точке справа от текущей

dYR:= Sin(5*X)*Sin(X)*Sqr(X)/(X-3)

-Sin(5*(X+dX))*Sin(X+dX)*Sqr(X+dX)/(X+dX-3);

if (dY>dYL) and (dY>dYR) or

(dY<dYL) and (dY<dYR) then //Если Х – точка ререгиба

if dY>dYmax then //и dY в ней больше dYmax,

begin //то текущей точкой перегиба

//с максимальной производной станет

Xmax:=X-dX; //текущее значение Х, а текущим

//максимальным приращением в точкой перегиба -

dYmax:=dY; //значение dY.

end;

dYL:=dY;

dY:=dYR;

until X>1.9995;

WriteLn(Xmax,' - точка перегиба, в которой достигается'

,#13#10, dYmax/dX,' - максимум производной');

ReadLn;

end.

Задания 3.6.2 для самостоятельной проработки

Во всех заданиях не использовать аналитических формул производных заданных функций. Вычисленные значения выводить с поясняющими текстами.

  1. Составить программу вычисления максимального и минимального значений функции Y=X3-18X2-10X+7 и соответствующие значения аргумента при его изменении на интервале от –4 до 16 с шагом 0,01.

  2. Составить программу вычисления значения аргумента, изменяя его на интервале от -1 до 2,5 с шагом 0,001, при котором функция Xsin5 (3X) имеет минимальное по абсолютной величине значение производной.

  3. Составить программу вычисления максимального значения экстремума-минимума функции X1/3sin2(10X) и соответствующего значения аргумента при его изменении на интервале от 0,06 до 2,32 с шагом 0,001.

  4. Составить программу вычисления минимального расстояния между экстремумами-максимумами функции и соответствующих значений функции при изменении X на интервале от 8 до 18 с шагом 0,001.

  5. Произвольные значения от –3,4 до 1,1 аргумента функции Y=X5-18X3-22X2 находятся в массиве X(n), n≤20. Составить программу вычисления максимального и минимального значений функции, а также соответствующих значений элементов массива Х и их индексов.

  6. Известно, что в интервале от –2 до 8,5 уравнение cos(2,5X)sin2X +0,2=0 имеет несколько корней и что в каждом корне производная функции меньше -1000. Составить программу нахождения корня, в котором производная функции имеет максимальное значение.

  7. Известно, что в интервале от –14 до 19 функция имеет несколько точек перегиба со значениями производной в них больше –500. Составить программу нахождения точки перегиба, в которой производная функции имеет максимальное значение.

  8. Составить программу вычисления минимального расстояния между соседними корнями уравнения , изменяя X на интервале от 1,2 до 16 с шагом 0,0001.

  9. Составить программу вычисления значения аргумента, изменяя его на интервале от 6 до 12 с шагом 0,001, при котором производная функции Y=X0,2·sin2 X·cos(3X) имеет минимальное по абсолютной величине значение в точке перегиба.

  10. На интервале от -0,5 до 0,3 функция имеет несколько экстремумов. Требуется найти, изменяя аргумент с шагом dX, пару точек экстремума, разность значений функции в которых минимальна.

  11. Составить программу вычисления максимального расстояния между экстремумами-минимумами функции и соответствующих значений функции при изменении X на интервале от 2 до 8 с шагом 0,001.

  12. На интервале от –1,8 до 1,9 функция Y=cos(5X)·sin2X имеет несколько экстремумов. Требуется найти, изменяя аргумент с шагом dX, точку экстремума-минимума с максимальным значением функции.

  13. Составить программу вычисления минимального положительного значения функции Y=10-(2X3+7X2-3X4)sin(12X) и соответствующие значения аргумента при его изменении на интервале от –1,5 до 2,2 с шагом 0,001.

  14. Найти локальное минимальное приращение расстояния от точки с координатами (Xt,Yt) до кривой Y=X5-18X3-22X2, изменяя X на интервале от -3 до 0,2 с шагом 0,05.

  15. Составить программу вычисления максимального расстояния между корнями уравнения 2cos(2X)+XsinX+0,4=0 с положительным приращением функции в соседних точках, изменяя X на интервале от -2 до 3 с шагом 0,0001.

  16. На интервале от 8 до 16 функция Y=cos(5X)sin2X имеет несколько экстремумов. Требуется найти, изменяя аргумент с шагом dX, точку экстремума с максимальным значением функции.

  17. В массивах X(N), Y(N), N≤30, заданы координаты точек на плоскости. Найти такое i≤N, для которого расстояние от точки (Xi,Yi) до прямой aX+bY+c=0 минимально.

  18. Изменяя аргумент функций Y1=Xsin(5X) и Y2=excos2(2X) на интервале от 0 до 4,15 с шагом 0,0001, найти минимальное расстояние между их экстремумами.

  19. Изменяя аргумент функции Y=Xcos(12X)-X*sin(X) на интервале от -1 до 1 с шагом 0,0001, найти минимальное и максимальное её приращения и соответствующие им значения аргумента.

  20. Найти минимальное расстояние от точки с координатами (Xt,Yt) до прямых aiX+biY+ci=0, i=1, 2,…,10, используя формулу расстояния от точки (Xt,Yt) до прямой aX+bY+c=0.

  21. ёёёНа интервале от -2 до 6 функция Y=cos(2,5X)sin2X имеет несколько экстремумов. Требуется найти, изменяя аргумент с шагом dX, точку экстремума-максимума с минимальным значением функции.

  22. Составить программу вычисления максимального отрицательного значения функции Y= sin 5 (3X) +15Xsin4(3X)cos(3X) и соответствующие значения аргумента при его изменении на интервале от –4 до 16 с шагом 0,001.

  23. Составить программу вычисления минимального расстояния между корнями уравнения 1/(2cosX+Xsin(2X))-0,4=0 с положительным приращением в их окрестностях, изменяя X на интервале от –1,5 до 7 с шагом 0,0001.

  24. На интервале от -1 до 8 функция Y=cos(2,5X)sin2X+0,5 имеет несколько экстремумов-минимумов. Требуется найти, изменяя аргумент с шагом dX, минимальный положительный из таких экстремумов и соответствующее значение X.

  25. Найти минимальное расстояние от точки с координатами (Xt,Yt) до кривой Y=X2sin(9X), а также соответствующую точку (Xmin,Ymin) на этой кривой.