
- •Введение
- •1. Фильтры с конечной импульсной характеристикой
- •1.1. Структурная схема фильтров с конечной импульсной характеристикой
- •1.2. Характеристика ких-фильтров
- •1.3.Общий порядок синтеза ких-фильтра.
- •2. Фильтры с бесконечной импульсной характеристикой
- •2.1. Структурная схема фильтров с бесконечной импульсной характеристикой
- •2.2. Характеристика бих-фильтров
- •2.3. Прототипы бих-фильтров
- •2.4. Синтез коэффициентов бих-фильтров
- •2.5. Синтез фильтров со сложной формой ачх
- •3. Двумерные фильтры
- •3.1 Двумерные дискретные сигналы
- •3.2. Формализация описания двумерных дискретных систем
- •3.3. Синтез и реализация двумерных ких-фильтров
- •3.3.1. Реализация ких-фильтров с помощью прямой свертки
- •3.3.2. Реализация ких-фильтров с помощью ддпф
- •3.3.3. Реализация ких-фильтров с использованием окон
- •3.3.4. Синтез ких-фильтров для специальных способов реализации
- •3.4. Синтез и реализация двумерных бих-фильтров
- •4. Методы цифровой обработки изображений
- •4.1. Пространственная фильтрация цветных изображений
- •4.2. Эквализация гистограммы
- •4.3. Фильтрация с усилением высоких частот
- •4.4. Решение задачи выделения контуров изображений
Введение
Цифровая обработка сигналов (ЦОС) – наука, изучающая методы и алгоритмы обработки цифровых сигналов и занимающаяся разработкой аппаратных и программных решений соответствующих систем.
Общие вопросы описания процессов в цифровых системах управления подробно рассмотрены в [3].
Множество задач, решаемых ЦОС, подразделяется на две группы: анализ сигналов и их синтез. Задачей анализа сигналов является выделение небольшой группы значимых параметров, максимально полно описывающих сигнал. Синтез сигналов по совокупности описывающих их параметров – процедура, обратная анализу.
В основе решения этих задач лежат три основных типа преобразований:
вычисление свертки последовательностей;
вычисление корреляционных функций;
дискретное преобразование Фурье.
Цифровой фильтр – это линейная импульсная система, которая осуществляет преобразование входного сигнала в соответствии с заданной амплитудно-частотной (АЧХ) или фазо-частотной характеристикой (ФЧХ).
Данное учебное пособие посвящено рассмотрению вопросов цифровой фильтрации, которые являются основой синтеза цифровых сигналов. Представленный материал структурирован в соответствии с классификацией фильтров на одномерные и многомерные; нерекурсивные и рекурсивные. Большое внимание уделено такой быстро развивающейся и широко применяемой области цифровой фильтрации, как обработка цифровых изображений. Изложенный в конспекте теоретический материал закрепляется в ходе выполнения соответствующих практических и лабораторных работ [14,15].
1. Фильтры с конечной импульсной характеристикой
1.1. Структурная схема фильтров с конечной импульсной характеристикой
Фильтры c конечной импульсной характеристикой (КИХ-фильтры, FIR-фильтры (Finite Impulse Response Filter)) длиной N в общем случае описываются следующим разностным уравнением [6]:
,
(1.1)
где
– входной сигнал фильтра;
– выходной
сигнал фильтра;
– коэффициенты
фильтра.
Передаточная
функция КИХ-фильтра
получается в результате применения к
разностному уравнению (2.2.1)
–преобразования
и равна:
.
(1.2)
Структурная схема КИХ-фильтра представлена на рис. 1.1.
Простейшим примером КИХ-фильтра является вычисление скользящего среднего:
.
(1.3)
Если
на вход такого фильтра подать единичную
ступеньку, то выходные значения будут
нарастать до установившего значения в
течение
– периода
дискретизации. Если
Рис. 1.2. Реакция на единичную ступеньку скользящего среднего
,
то
;
;
;
…
;
.
Импульсная
характеристика фильтра представлена
на рис. 1.2. Как видно из рисунка величина
запаздывания будет расти с ростом
порядка фильтра (его длины) и равна
периодов дискретизации (рис. 1.3).
Если
длина фильтра
,
то разностное уравнение (1.3) имеет вид:
,
Передаточная функция описывается выражением:
.
Рис.
1.3. Реакция скользящего среднего на
одиночный единичный импульс
Рис. 1.4. АЧХ скользящего среднего длины 2.
АЧХ такого фильтра представлена на рис. 1.4:
,
где
– период дискретизации.