
- •3. Нагрев металлов перед обработкой давлением. Назначение. Выбор температурного интервала обработки металлов давлением. Дефекты, возникающие при нагреве заготовок: перегрев, пережог.
- •6. Оборудование для прокатки металлов. Понятие рабочей линии прокатного стана. Виды прокатных станов по числу валков: дуо, трио, кварто, многовалковые и универсальные. Их схемы и назначение.
- •7. Получение машиностроительных профилей волочением. Сущность и схема волочения. Достоинства и недостатки волочения.
- •8. Получение машиностроительных профилей волочением. Станы, используемые для волочения: барабанный и цепной. Их схемы и принцип работы.
- •10. Изготовление поковок машиностроительных деталей. Классификация поковок, изготовляемых свободной ковкой, по массе и конфигурации
- •12. Изготовление поковок машиностроительных деталей свободной ковкой. Понятие о протяжке: разновидности, их схемы, инструмент для протяжки. Показатели деформации при протяжке.
- •13. Изготовление поковок машиностроительных деталей свободной ковкой. Операции свободной ковки: прошивка, отрубка, гибка. Их схемы, назначение, применяемый инструмент.
- •18. Горячая объемная штамповка на кривошипных горячештамповочных прессах (кгшп): схема кгшп, принцип действия, особенности конструкции, назначение. Преимущества и недостатки получения поковок на кгшп.
- •22. Оборудование для процессов обработки давлением. Паровоздушный молот: схема, принцип действия, разновидности конструкции, назначение. Преимущества и недостатки получения поковок на молотах.
- •24. Горячая штамповка на горизонтально-ковочных машинах (гкм): схема, принцип действия, особенности конструкции штампов, назначение. Преимущества и недостатки получения поковок на гкм.
- •26. Специализированные процессы листовой штамповки: вырубка, пробивка и вытяжка с помощью эластичной среды, ротационная вытяжка штамповка взрывом. Назначение, схемы процессов, их достоинства.
1. Обработка металлов давлением. Сущность процесса пластического деформирования металлов. Место и роль обработки металлов давлением в машиностроении. Задачи, решаемые в процессе обработки металлов давлением. Основные технико-экономические показатели процессов обработки металлов давлением: коэффициент использования металла, коэффициент точности поковки.
Обработка давлением процессы формоизменения за счет пластической деформации под воздействием на заготовку внешних сил.
При пластической
деформации изменение формы и размеров
сохраняется и после прекращения действия
этих сил. Преимущества:
уменьшение отходов металла, повышение
производительности труда, изменение
физико-химических свойств (лучше
эксплуатационные свойства). Изменение
формы определяется перемещением частиц,
различают интеркристаллитное
(межзеренное) смещение и транскристаллитное
(внутризеренное) смещение. П
ластическая
деформация:
1) диффузионный механизм, реализуется при высоких температурах (близких к температуре плавления) и низких внешних нагрузках. 2) сдвиговой механизм - смещение отдельных частей кристалла под действием внешних сил. Она идет и при низких, и при высоких температурах.
Сдвиговая пластическая деформация может осуществляться скольжением или двойникованием.
М
еталл
в процессе пластической деформации
упрочняется. Упрочнением
называется увеличение сопротивляемости
материала деформации. Упрочнение при
пластической деформации называется
наклепом.
Д
еформирование
металлов подразделяют на холодное
и горячее в
зависимости от температуры: холодное
деформирование проводят ниже температуры
рекристаллизации, металл наклепывается
и сохраняет наклеп, горячее
деформирование
проводят выше температуры рекристаллизации,
когда получаемый наклеп снимается
одновременно протекающей рекристаллизацией.
2. Факторы, влияющие на пластичность металлов: температура, скорость, степень деформации; химический состав и микроструктура материала. Понятие о механической схеме деформации. Схемы напряженного и деформированного состояний при обработке металлов давлением.
Температура металла оказывает значительное влияние на его пластические свойства, при повышении температуры пластичность возрастает.
Степень и скорость деформации оказывают на металл одновременно упрочняющее и разупрочняющее действие. С увеличением степени деформации увеличивается наклеп металла (ухудшается пластичность), но увеличение степени деформации ведет к разупрочнению металла и улучшению его пластичности. Увеличение скорости деформации уменьшает время протекания процесса рекристаллизации (ухудшает пластичность металла), но с повышением скорости деформации улучшаются пластические свойства. Химический состав сплава заготовок под ОМД регламентируется ГОСТом. К вредным примесям, снижающим пластичность, относятся азот, кислород, водород, сера и фосфор.
Микроструктура. На пластичность оказывает влияние размер зерна, равноосность зерен и однородность структуры. Механическая схема деформации – представляет собой совокупность схем главных напряжений и главных деформаций. Для определения напряженного состояния точки достаточно знать напряжения, действующие на трех взаимно-перпендикулярных площадках, проходящих через рассматриваемую точку – главные напряжения.
При
определенных условиях в соответствии
со схемами главных напряжений возникают
главные деформации – деформации в
направлении главных осей. Всего схем
главных деформаций может быть три.
Наилучшей
схемой по пластичности является схема
всесторонней деформации с одной
деформацией удлинения и двумя деформациями
сжатия. Она характерна для процесса
прессования.
3. Нагрев металлов перед обработкой давлением. Назначение. Выбор температурного интервала обработки металлов давлением. Дефекты, возникающие при нагреве заготовок: перегрев, пережог.
Для повышения пластичности и снижения сопротивления деформированию металл перед деформированием нагревают до температур рекристаллизации. При нагреве на поверхности заготовок образуется слой оксидов, называемый окалиной. Нагрев углеродистых сталей приводит также к выгоранию углерода поверхностного слоя на глубину до 2 мм, обезуглероживание ведет к снижению прочности и твердости стали. Для уменьшения окалинообразования и обезуглероживания применяют нагрев в защитной атмосфере или вакууме, скоростной нагрев, защитные засыпки и обмазки, наносимые на заготовку перед нагревом.
Выбор нагрева перед ОМД заключается в температур начала и конца обработки и времени нагрева: от 7270С до 100…1500С ниже температуры плавления. При нагреве до более высоких температур в металле появляются два вида дефектов – перегрев и пережог. При перегреве размеры зерен увеличиваются, пластичность уменьшается и ухудшаются механические свойства. Пережог – окисление металла по границам зерен при нагреве до температур, близких к температуре плавления. Пережог является неисправимым браком. Скорость охлаждения не должна превышать допустимых значений во избежание трещин. Цикл охлаждения заготовок зависит от их химического состава и размеров и для крупных поковок может длиться несколько суток.
4. Изготовление машиностроительных профилей методом прокатки металлов. Сущность и назначение прокатки. Основные виды прокатки (продольная, поперечная и поперечно-винтовая прокатка), их схемы. Условие захвата металла валками при продольной прокатке.
С
ортовые
профили
делят на профили простой геометрической
формы (квадрат, круг, шестиугольник) и
фасонные (швеллер, рельс, угловой,
тавровый и др.).
Листовую сталь классифицируют по назначению: автотракторная, трансформаторная, кровельная жесть и т.д. Кроме того, листовую сталь делят на толстолистовую (толщиной 4…160 мм) и тонколистовую (<4 мм).
Трубы делят на бесшовные и сварные.
П
ериодические
профили имеют
периодически изменяющуюся форму и
площадь поперечного сечения вдоль оси
заготовки.
Прокатка - обжатие заготовки валами.
П
родольная
прокатка - валки
вращаются в противоположные стороны,
оси валков параллельны.
Угол α называется углом захвата. На заготовку со стороны валков действуют нормальные силы N и сила трения T. Условие захвата металла валками:
N
sin<Tcos.
Угол
называется углом захвата. Выразив T=fN,
где f
– коэффициент трения, получим sin<fcos
или f<tg.
Т.е. для осуществления захвата металла
валками необходимо, чтобы коэффициент
трения между валками и заготовкой был
больше тангенса угла захвата.
П ри поперечной прокатке валки, вращаясь в одном направлении, придают вращение заготовке и деформируют ее. Оси валков параллельны.
П ри поперечно-винтовой прокатке валки расположены под углом и сообщают заготовке при деформировании вращательное и поступательное движения.
5. Получение машиностроительных профилей прокаткой металлов. Инструмент для прокатки. Виды валков: гладкие, ступенчатые, ручьевые. Понятие о ручье и калибре валков. Схема и последовательность получения бесшовных труб.
С ортовые профили делят на профили простой геометрической формы (квадрат, круг, шестиугольник) и фасонные (швеллер, рельс, угловой, тавровый и др.).
Л
истовую
сталь классифицируют
по назначению: автотракторная,
трансформаторная, кровельная жесть и
т.д. Кроме того, листовую сталь делят на
толстолистовую (толщиной 4…160 мм) и
тонколистовую (<4 мм).
Трубы делят на бесшовные и сварные.
П ериодические профили имеют периодически изменяющуюся форму и площадь поперечного сечения вдоль оси заготовки.
Инструментом для прокатки являются валки, которые в зависимости от прокатываемого профиля могут быть гладкими, применяемыми для прокатки листов, лент и т.д.; ступенчатыми, например для прокатки полосовой стали, и ручьевыми для получения сортового проката.
Ручьем называют вырез на боковой поверхности валка, а совокупность двух ручьев образует полость, называемую калибром. Валки состоят из рабочей части – бочки, шеек и трефы.
П
роцесс
прокатки состоит из двух основных
операций: прошивки отверстия в заготовке
и прокатки прошитой заготовки.