
- •4 Тема: «Функциональные свойства буровых растворов и методы их определения»
- •4.1 Плотность буровых промывочных жидкостей
- •4.1.1. Определение плотности раствора ареометром абр-1
- •4.1.2 Определение плотности раствора рычажными весами
- •4.1.3 Определение плотности раствора пикнометром
- •4.2 Структурно-механические свойства
- •4.2.1 Определение статического напряжения сдвига на приборе снс–2
- •4.2.2 Определение снс на ротационном вискозиметре всн-3
- •Внутренний диаметр гильзы, мм ...............….…………………......…44
- •4.2.3 Определение снс на вискозиметре fann
- •4.3 Реологические свойства промывочных жидкостей [4]
- •4.3.1 Простые реологические модели
- •4.3.2 Сложные реологические модели
- •4.3.3 Реология буровых растворов
- •4.3.4 Определение динамического напряжения сдвига (днс), пластической и эффективной вязкости
- •4.3.4.1 Определение пл, 0, эф на ротационном вискозиметре всн-3
- •4.3.4.2 Определение пл, 0, эф на 8- и 12-скоростном вискозиметре fann
- •4.3.5 Определение условной вязкости вискозиметром вбр-1
- •4.3.6 Определение условной вязкости с помощью воронки Марша
- •4.4 Фильтрационные и коркообразующие свойства
- •4.4.1 Определение показателя фильтрации промывочных жидкостей на приборе вм-6
- •4.4.2 Определение показателя фильтрации промывочных жидкостей на приборе Фильтр-пресс флр-1
- •4.4.3 Определение показателя фильтрации на фильтр - прессе api
- •4.4.4 Определение фильтрации при повышенных температурах и давлениях
- •4.4.5 Определение толщины и проницаемости фильтрационной корки
- •4.4.6 Определение проницаемости фильтрационной корки
- •4.5 Электрохимические свойства
- •4.5.1 Определение водородного показателя электрометрическим методом
- •4.5.2 Определение удельного электрического сопротивления
- •4.6 Триботехнические свойства бпж
- •4.6.1 Определение коэффициента трения в системе бурильные трубы - промывочная жидкость - стенка ствола скважины
- •4.6.2 Измерение коэффициента трения пары «бурильные трубы – фильтрационная корка»
- •4.6.3 Определение cмазочных свойств бпж на приборе фирмы «Бароид»
- •4.7 Ингибирующая способность
- •4.7.1 Определение ингибирующих свойств бурового раствора по показателю увлажняющей способности
- •4.7.2 Определение диспергирующей способности
- •4.7.3 Определение коэффициента набухания глин и глинопорошков на приборе Жигача-Ярова
4.4 Фильтрационные и коркообразующие свойства
Еще одно важное требование, предъявляемое к промывочной жидкости, — наличие у нее способности изолировать проницаемые пласты, вскрываемые долотом, путем образования тонкой малопроницаемой фильтрационной корки. При отсутствии такой фильтрационной корки промывочная жидкость будет непрерывно проникать в проницаемый пласт.
Для образования фильтрационной корки необходимо, чтобы промывочная жидкость содержала частицы, размер которых чуть меньше размера поровых отверстий в пласте. Эти частицы, называемые мостообразующими, перекрывают наружные поры, после того как некоторое число меньших частиц проникнет в поровое пространство пласта. Мостовая перемычка у наружных пор продолжает расти за счет отложения мелких частичек, и через несколько секунд в пласт будет поступать только жидкая фаза промывочной жидкости. Мелкие частицы твердой фазы бурового раствора формируют внутреннюю фильтрационную корку в приствольной зоне порового пространства. Затем эти частицы откладываются уже непосредственно на стенках скважины и таким образом, формируется наружная фильтрационная корка, через которую в околоствольное пространство поступает только фильтрат промывочной жидкости.
Поступление фильтрата промывочной жидкости в слабосцементированные и рыхлые породы вызывает их дополнительное увлажнение и разупрочнение, что приводит к обвалам, осыпям стенок скважины, частым и длительным проработкам ее ствола и др.
Проникновение фильтрата в продуктивные песчано-глинистые пласты приводит к набуханию входящих в их состав глинистых минералов; образованию нерастворимых осадков, эмульсий и гелей, вызванному взаимодействием фильтрата с пластовыми флюидами, изменению вязкости последних и др. В результате снижается проницаемость приствольной зоны продуктивного пласта, что затрудняет вызов притока пластового флюида при освоении скважины и существенно снижает ее дебит, особенно в начальный период эксплуатации.
В процессе сооружения скважины проявляются три вида фильтрации:
- статическая, протекающая при отсутствии циркуляции бурового раствора в скважине;
- динамическая, происходящая в условиях циркуляции бурового раствора;
- мгновенная в момент скола породы долотом.
В условиях статической фильтрации, когда буровой раствор неподвижен, скорость фильтрации (объем фильтрата, поступающего на единицу площади пласта в единицу времени) снижается, а толщина фильтрационной корки - увеличивается со скоростью, затухающей во времени (рисунок 4.28).
В условиях динамической фильтрации рост фильтрационной корки ограничен эрозионным (разрушающим) воздействием восходящего потока бурового раствора. Степень эрозии корки зависит от режима течения бурового раствора в кольцевом пространстве (ламинарный, турбулентный) и других факторов.
В момент вскрытия (обнажения) пласта скорость фильтрации высока и фильтрационная корка быстро растет. После того, как скорость роста корки становится равной скорости ее эрозии (разрушения), толщина корки и скорость фильтрации стабилизируется.
Полностью предупредить фильтрационные потери промывочных жидкостей на водной основе практически невозможно, их можно только минимизировать. Это достигается увеличением в промывочной жидкости доли воды, которая настолько прочно удерживается частицами твердой фазы, что не может быть удалена из промывочной жидкости даже при огромных давлениях; снижением проницаемости образующейся на стенках скважины фильтрационной корки; повышением вязкости фильтрата и, соответственно, повышением сопротивления его движению в поровом пространстве и др.
Для уменьшения фильтратоотдачи промывочных жидкостей в практике бурения используют чаще всего полимеры. Принцип их действия заключается в следующем:
- уменьшение свободного пространства между твердыми частицами в фильтрационной корке, которое занимают молекулы полимера, имеющие достаточно большие размеры;
- повышение вязкости фильтрата;
- уменьшение объема свободной дисперсионной среды (воды) за счет присоединения её молекулами полимера, несущими собственные гидратные оболочки.
Доля связанной воды увеличивается с ростом адсорбционной активности твердой фазы промывочной жидкости и вводимых в нее химических реагентов, а также с повышением концентрации названных компонентов.
Адсорбционная активность глин и органических реагентов, т.е. способность их связывать воду, может быть оценена по величине адсорбции ими метиленовой сини.
Поддержание параметра водоотдачи бурового раствора:
При бурении верхних интервалов (направление и кондуктор) допустимая величина водоотдачи =до 35 мл/30 мин
При бурении под технические колонны допустимая величина водоотдачи =12 - 20 мл/30 мин
При бурении под эксплуатационную колонну допустимая величина водоотдачи =6 - 10 мл/30 мин
При вскрытии продуктивного пласта допустимая величина водоотдачи = 4 - 6 мл/30 мин
Стандартные исследования фильтрационных свойств проводятся при статических условиях, т. к. исследования в динамических условиях занимают много времени и требуют использования сложного, дорогостоящего оборудования. Единственный на сегодняшний день серийно выпускаемый прибор для определения динамической фильтрации (FANN Model 90 Dynamic Filtration System).
Скорость фильтрации и увеличение толщины корки, измеренные в ходе стандартных исследований на поверхности, лишь приближенно соответствуют фактическим значениям этих показателей в скважинных условиях. Более надежный критерий — проницаемость фильтрационной корки, поскольку она является важнейшим фактором, определяющим как статическую, так и динамическую фильтрацию.
Проницаемость фильтрационной корки зависит от гранулометрического состава твердой фазы промывочной жидкости, а также от электрохимических условий. Обычно чем больше в промывочной жидкости частиц коллоидного размера, тем меньше проницаемость корки. Присутствие в глинистых промывочных жидкостях растворимых солей резко повышает проницаемость фильтрационной корки, но некоторые органические коллоиды позволяют добиться низких проницаемостей корки даже в присутствии насыщенных солевых растворов.
Показатель фильтрации Ф, (см3/30 мин) равен объему фильтрата, прошедшего за 30 мин через фильтрационную корку диаметром 75 мм при определенном перепаде давления DР. В нашей стране показатель фильтрации принято измерять с помощью прибора ВМ-6 при DР = 0,1 МПа.
Для измерения показателя фильтрации при более высоком перепаде давления используют фильтр-пресс ФЛР-1. Создаваемый в нем перепад давления равен 0,7 МПа, что является стандартной величиной при измерении показателя фильтрации в зарубежной практике.
Однако известно, что скорость фильтрации к перепаду давления значительно менее чувствительна, чем к температуре. Рост температуры приводит к существенному увеличению скорости фильтрации по нескольким причинам. Так, с увеличением температуры снижается вязкость фильтрата, что вызывает снижение гидравлических сопротивлений при движении фильтрата в поровых каналах фильтрационной корки и пласта, в результате чего увеличивается накопленный объем фильтрата.
Кроме того, с повышением температуры значительно возрастает степень флокуляции частиц твердой фазы промывочных жидкостей, что вызывает увеличение проницаемости формируемых фильтрационных корок.
Высокие температуры вызывают деструкцию понизителей фильтрации (полимеров), что приводит к полной потере их функций и, соответственно, к резкому росту показателя водоотдачи.
В этой связи кроме прибора ВМ-6 и фильтр-пресса ФЛР-1 для измерения величины показателя фильтрации используют еще и установку УИВ-2, позволяющую проводить испытания при температуре до 250 °С и перепаде давления до 5 МПа.
Зарубежные высокотемпературные фильтр-прессы высокого давления в отличие от УИВ-2 имеют гораздо меньшую массу и меньшие габариты, однако при этом создаваемые температура и перепад давления не превышают соответственно 148,9 °С и 3,51 МПа.