
- •Предисловие
- •1. Сжигание топлив в кипящем слое
- •1.1. Сжигание твердых топлив в топках котлов с классическим кипящим слоем
- •1.2. Топки с циркулирующим кипящим слоем
- •1.2.1. Отечественные котлы с циркулирующим кипящим слоем
- •1.2.2. Котлы с циркулирующим кипящим слоем под давлением
- •1.2.3.Зарубежные котлы с кипящим слоем (промышленный опыт)
- •Котлы с кипящим слоем, эксплуатируемые в сша
- •Применение котлов с цкс для сжигания сланцев
- •1.3. Сжигание твердых топлив с использованием аэрофонтанных предтопков
- •2. Плазменная технология
- •3. Разработка новых конструкций топочных камер для сжигания углей
- •3.1. Вихревые топки с жидким шлакоудалением
- •3.2. Принцип технологии вихревого низкотемпературного сжигания
- •3.2.1. Экономичность вир- технологии
- •3.2.2. Экологические показатели
- •3.2.3. Надежность и маневренность вир-технологии
- •3.2.4. Результаты испытаний модернизированного котла пк-38 (ст. № 3а) Назаровской грэс
- •3.3. Пылеугольный котел с кольцевой топкой для крупных энергоблоков
- •4. Термическая подготовка углей перед сжиганием в условиях тэс
- •4.1.Термическая подготовка углей в термоциклонных предтопках
- •4.2. Разработки эниНа
- •4.3. Работы Политехнического института сфу по применению предварительной термической подготовки углей в условиях тепловой электростанции
- •4.3.1. Разработка технологии сжигания с внутритопочной термической подготовкой углей
- •4.3.2.Принципиальные схемы термической подготовки углей для организации безмазутной растопки и подсветки факела топочных камер котлов
- •20, 21, 24, 25, 26, 29 – Щелевые зазоры; 22 – нижние торцы амбразур;
- •26, 27, 28, 29 – Зазоры
- •4.3.3. Опытно-промышленный образец муфельного предтопка на котле бкз-420 140 Красноярской тэц-2
- •4.3.4. Система термоподготовки для организации муфельной растопки котлов Томь-Усинской грэс
- •4.3.5. Универсальная горелка для котлов пк-40-1 Беловской грэс
- •Птб при включении питателей пыли на муфеле:
- •Птб при расшлаковке абразуры муфеля при работе в режиме основной горелки:
- •4.3.6. Универсальная всережимная горелка для котлов бкз-420-140 Красноярской грэс-2
- •5. Сжигание водотопливных суспензий
- •5.1. Современное состояние технологии сжигания водотопливных суспензий
- •5.2. Основные технологические характеристики водотопливных суспензий
- •5.3. Опыт применения водоугольных суспензий
- •5.4. Суспензионное топливо для мазутных тэс и котельных
- •5.5. Опыт применения водомазутных эмульсий на энергетических котлах тгмп-314 и тгм-96 тэц-23 оао «Мосэнерго»
- •5.6.Разработки научно-исследовательского и проектно-изыскательского института «Новосибирсктеплоэлектропроект» Сибирского энтц
- •5.7. Исследования мэи (Технический университет) по применению водомазутных эмульсий для улучшения технико-экономических и экологических характеристик котельных агрегатов
- •5.8. Технико-экономическая перспективаиспользования суспензионного угольного топлива
- •6. Гидравлические электрические станции
- •3 Сопло; 4 рабочее колесо; 5 кожух; 6 отклонитель; 7 лопасти (ковши); 8 нижний бьеф
- •Состав и компоновка основных сооружений
- •Плотины
- •Типы и параметры гидрогенераторов
- •Малые гэс
- •7. Геотермальная энергетика
- •7.1. Использование геотермальных ресурсов в мире
- •7.2. Геотермальные ресурсы России
- •7.3. Геотермальные энергетические технологии и оборудование России
- •1 Скважина; 2 бак-аккумулятор; 3 расширитель; 4 турбина; 5 генератор;
- •6 Градирня; 7 насос; 8 смешивающий конденсатор; 9, 10 насос
- •7.4. Российские бинарные энерготехнологии
- •7.4. Геотермальное теплоснабжение
- •7.5. Перспективы развития геотермальной энергетики России
- •7.6. Опытная геотермальная электростанция, основанная на цикле а.И.Калины
- •8. Ветроэнергетические установки
- •8.1. Состояние и перспективы развития мировой ветроэнергетики
- •8.2. Высотная ветроэнергетическая установка
- •8.3. Ветроэнергетика в заполярных условиях
- •Основные направления развития ветроэнергетики в заполярных условиях
- •Преимущества применения энергии ветра в заполярных и холодных климатических условиях
- •Специфика развития ветроэнергетики и эксплуатации вэу при холодном климате
- •Использование энергии ветра для отопления в условиях холодного и заполярного климата
- •Новая ветро-дизельная электрическая установка
- •9. Альтернативные способы получения электроэнергии
- •9.1. Магнитогидродинамическое преобразование энергии
- •2 Сопло; 3 мгд-генератор; 4 место конденсации щелочных металлов; 5 насос; 6 место ввода щелочных металлов
- •9.2. Термоэлектрические генераторы
- •9.3. Изотопная энергетика
- •9.4. Термоэмиссионные генераторы
- •1 Катод; 2 анод
- •9.5. Электрохимические генераторы
- •3 Электролит; 4 анод
- •9.6. Использование морских возобновляемых ресурсов
- •9.6.1. Приливные электростанции
- •Агрегаты пэс
- •9.6.2. Океанские гидроэлектростанции (огэс) на основе морских течений Физические основы работы огэс
- •9.6.3. Волновые электростанции
- •9.6.4. Использование тепловой энергии океана
- •9.7. Солнечная энергетика
- •9.7.1. Современное состояние солнечной энергетики
- •Типы циркуляционных и гравитационных гелиоустановок:
- •9.7.2.Разработка и внедрение первой в районе Сочи солнечно-топливной котельной
- •9.7.3. Разработка и испытания солнечно-топливной котельной в Краснодарском крае
- •9.7.4. Повышение эффективности преобразования солнечной энергии
- •Повышение числа часов использования установленной мощности сэс
- •Увеличение срока службы и снижение стоимости солнечной электростанции
- •9.8. Использование энергии термоядерных реакций
- •9.9. Комбинированные энергоустановки
- •9.10. Биоэнергетические установки
- •9.10.1. Вклад биотоплива в мировое производство энергии
- •9.10.2. Прямое сжигание
- •9.10.3. Пиролиз
- •Газификация биомассы
- •9.10.5. Виды топлив, получаемых из биомассы
- •9.10.6. Перспективы развития биоэнергетики России с использованием древесины
- •Прямое сжигание древесины Олонецкая теплостанция на древесных отходах
- •Разработчик и изготовитель котла на биотопливе
- •Принцип действия котла с колосниковой решеткой. Процесс горения и факторы, влияющие на него
- •Циркуляция воды в котле
- •Газогенераторные установки на древесине для получения тепловой и электрической энергии
- •9.11. Подземная газификация углей
- •9.14.1. Отечественный опыт подземной газификации угля
- •Подземная газификация угля в г. Красноярске
- •9.15. Тепловые насосы
- •9.15.1. Перспективы применения тепловых насосов
- •9.15.2. Тепловые насосы в системах малой энергетики
- •Заключение
- •Библиографический список к главе 1
- •К главе 2
- •К главе 3
- •К главе 4
- •К главе 5
- •К главе 6
- •К главе 7
- •К главе 8.
- •К главе 9
Типы циркуляционных и гравитационных гелиоустановок:
а) циркуляционная гелиоустановка термосифонного типа с одноступенчатым гелиоколлектором;
б) циркуляционная гелиоустановка с насосной циркуляцией с многоступенчатым гелиоколлектором, изготовленным из однородных элементов;
в) гравитационная (самотечная) гелиоустановка с гелиоколлектором, выполненым из однородных элементов;
г) трёхконтурная циркуляционная гелиоустановка с насосной циркуляцией в каждом из контуров и с трёхступенчатым гелиоколлектором, изготовленным из разнородных элементов.
В рассмотренной гелиоустановке 9 гравитационного типа с многоступенчатыми гелиоколлекторами отсутствует многократная циркуляция воды, что существенно улучшает её технико-экономические показатели.
Для всех типов гелиоустановок необходимо применение дополнительных источников энергии, которые могли бы компенсировать недостаток поступления солнечной энергии в облачные и дождливые дни.
Рис. 9.22. Типы циркуляционных и гравитационных гелиоустановок: 1 – одноступенчатый гелиоколлектор из однородных элементов; 2 – циркуляционный трубопровод; 3 – бак-аккумулятор; 4 – многоступенчатый гелиоколлектор из однородных элементов; 5 – насос; 6 – расходный бак холодной воды; 7 – гравитационный (самотечный трубопровод); 8 – регулирующий вентиль; 9 – элемент НПК-1; 10 – элемент НПК-2; 11 – элемент СПК-2; 12 – трёхступенчатый бак-аккумулятор теплоты; 13 – перфорированные перегородки
Рис. 9.23. Гелиоустановка гравитационного типа с многоступенчатым гелиоколлектором из разнородных элементов: 1 – расходный бак холодной воды; 2 – поплавковый регулятор уровня; 3 – первая ступень гелиоколлектора; 4 – вторая ступень гелиоколлектора; 5 – третья ступень гелиоколлектора; 6 – регулирующий вентиль; 7 – регулятор температуры; 8 – ёмкость постоянного уровня; 9 – бак-аккумулятор
9.7.2.Разработка и внедрение первой в районе Сочи солнечно-топливной котельной
Как известно, первая на территории бывшего СССР солнечно-топливная котельная, разработанная ЭНИН им. Кржижановского, была построена для гостиницы «Спортивная» в Симферополе. Она была оборудована отопительными котлами на природном газе и солнечными коллекторами площадью 204 м2. Эта гелиоустановка обеспечила экономию 20 % годового расхода природного газа и покрытие до 80 % нагрузки горячего водоснабжения. Гелиосистема была выполнена в виде солнечной приставки к имевшейся котельной. В Краснодарском крае в доперестроечный период под руководством В. А. Бутузова было построено пять подобных установок. Анализ работы солнечно-топливных котельных на современном этапе показывает их достаточно высокую эффективность как в части экономии топлива и обеспечения экологической безопасности, так и по капитальным затратам. В таких системах достигаются наибольшие КПД солнечных коллекторов, большая продолжительность сезона работы и повышенная эксплуатационная надежность. Одним из наиболее существенных достоинств этих установок является частичное использование существующего оборудования, а также возможность их обслуживания штатным персоналом котельной. Для комбинированного подогрева подпиточной воды солнечно-котельные установки в южных регионах могут работать в круглогодичном режиме.
В Краснодарском крае, обладающем большим потенциалом солнечной энергии, эксплуатируются 36 гелиоустановок общей площадью 2700 м2. В сочинском санатории «Лазаревское» функционирует крупнейшая на побережье гелиосистема площадью 400 м2.
Котельная в пос. Солоники Лазаревского района г. Сочи мощностью 1 МВт предназначена для отопления и горячего водоснабжения четырех жилых трехэтажных домов. В котельной установлено четыре котла типа «Универсал-5М», работающих на каменном угле, тепловой мощностью 0,259 МВт с площадью поверхности нагрева 33,1 м2 каждый без систем газоочистки и утилизации теплоты уходящих газов. Имеется также бак-аккумулятор вместимостью 25 м3. В конце 1995 г. администрацией района было принято решение о реконструкции котельной с преобразованием ее в солнечно-топливную. Это мотивировалось высокой стоимостью и трудностью доставки органического топлива, а также необходимостью улучшения экологической обстановки в речной долине поселка на фоне благоприятных для работы солнечно-коллекторных установок климатических условий.
Первая очередь гелиосистемы котельной площадью 250 м2 предусматривает покрытие около 35 % расчетной годовой нагрузки горячего водоснабжения поселка. Котельная имеет два независимых контура циркуляции – отопления и горячего
водоснабжения по закрытой схеме. Принципиальная схема солнечно-топливной котельной предусматривает сооружение дополнительного контура циркуляции, включающего в себя блоки солнечных коллекторов, циркуляционные насосы и баки-аккумуляторы с дополнительным баком вместимостью 20 м3.
Установка может работать в сезонном и круглогодичном режимах эксплуатации. Температура нагретой воды – 55 °С, время аккумулирования энергии в баке-аккумуляторе – краткосрочное (1 – 2 сут). Дублирующим источником энергии служат существующие водогрейные котлы. Гелиоустановка представляет собой систему солнечных коллекторов, состоящую из пяти модулей, которые, в свою очередь, разделены на блоки по 10 коллекторов в каждом. Система обвязки трубопроводов – попутная, каждый блок может быть отключен индивидуально.
Солнечные коллекторы располагают на плоской крыше котельной и специальной эстакаде. При проектировании учитывают возможность загрязнения коллекторов уносом из дымовой трубы, для предотвращения последствий которого выполнена система водяного смыва с поверхности коллекторов. Проектом предусмотрено использование солнечных коллекторов «Радуга» производства НПП «Конкурент» (г. Жуковский Московской области). Поглощающая панель коллектора – штампосварная из листовой нержавеющей стали, покрытие панели – селективное, выполненное напылением в вакуумной камере. Корпус изготовлен из специального анодированного алюминиевого профиля, тепловая изоляция – комбинированная (из базальтового волокна в алюминиевой фольге и пенополиуретана). Прогнозируемый срок службы коллектора – 15 – 20 лет.
Значения КПД установки зависят от годового изменения климатических условий и температуры подаваемого теплоносителя, поэтому моделирование изменения КПД в годовом и суточном циклах – достаточно сложная задача. В данном случае были рассчитаны месячные суммы солнечной радиации на наклонную поверхность коллекторов, при этом усредненные значения КПД принимались равными 0,35 – 0,6 в зависимости от режима работы гелиоустановки и расчетного месяца. Расчетное годовое удельное количество суммарной солнечной радиации на наклонную поверхность гелиоустановки составляет 1860 кВт-ч/м2, а за сезон с апреля по октябрь – 1350 кВт * ч/м2. Расчетное количество тепла, вырабатываемое гелиосистемой при сезонной работе, равно 175 МВт * ч, при круглогодичной работе – 227,3 МВт * ч.
Как показали технико-экономические расчеты, срок окупаемости гелиосистемы котельной в пос. Солоники (с учетом инфляции) составляет 3 – 6 лет в зависимости от режима работы установки, что является очень хорошим показателем для энергетического оборудования. При этом уменьшается количество вредных выбросов в окружающую среду: золы – на 3,4; оксидов серы, азота и углерода – на 10; углекислоты – на 156 т в год.
Можно констатировать, что внедрение комбинированных солнечно-топливных котельных – один из наиболее перспективных путей повышения эффективности и экологической безопасности существующих коммунальных котельных. На территории России эксплуатируется более 75 тыс. отопительных котельных жилищно-коммунального хозяйства (ЖКХ) с суммарной тепловой мощностью 690,5 тыс. Гкал/ч. Потребление топлива (в пересчете на 1 т условного топлива) составляет 217,4 млн т, из них только 41 % – природный газ, около 47 % – твердое топливо, 12 % – жидкое и прочие виды топлива (торф, дрова) [8].
В 1997 г. валовые выбросы вредных веществ в атмосферу предприятиями ЖКХ в целом по России составили 677,68 тыс. т, что на 3,1 % больше, чем в предыдущем году. При этом существенно возросли выбросы жидких и газообразных веществ, в том числе оксида углерода (на 7,2 %), оксидов азота (на 3,8 %), сернистого ангидрида (на 2,1 %). Это прежде всего связано с продолжением эксплуатации маломощных котельных, не имеющих установок для очистки дымовых газов.
В Краснодарском крае в 1999 г. валовой выброс загрязняющих веществ в атмосферу предприятиями энергетики составил 15,71 тыс. т, или 15,3 % общего выброса предприятиями края, что также осложняет экологическую ситуацию в курортном регионе. На предприятиях теплоэнергетики не сооружают установки очистки отходящих дымовых газов, на котлоагрегатах отсутствуют контрольно-измерительные приборы для поддержания оптимального режима горения, эксплуатируется устаревшее котельное оборудование.
Поэтому работы по проектированию и внедрению комбинированных солнечно-топливных котельных, использующих наиболее экологически безопасное топливо и оборудованных системами очистки дымовых газов, что способствует улучшению экологической обстановки в регионе, должны получить широкую поддержку со стороны властных структур и муниципальных предприятий, обеспечивающих централизованное теплоснабжение потребителей. Это особенно важно для региона Сочи, характеризующегося высокими требованиями к экологической безопасности рекреационной зоны, на фоне благоприятных для внедрения энергоустановок на базе НВИЭ природно-климатических условий. В этом плане опыт, полученный при разработке солнечно-топливной котельной в пос. Солоники Лазаревского района Сочи, представляется весьма полезным и должен учитываться при формировании региональных программ энергоснабжения и устойчивого развития территории.