- •Конспект по курсу лекций Операционные системы
- •Структура вычислительной системы
- •Аппаратный уровень вычислительной системы
- •Системы программирования
- •Модель организации прерываний с использованием регистра «слово состояние процессора»
- •3.6.1.1 Устройство последовательного доступа
- •Организация управления внешними устройствами
- •Иерархия памяти
- •Аппаратная поддержка ос и систем программирования
- •Некоторые проблемы
- •1. Вложенные обращения к подпрограммам
- •2. Накладные расходы при смене обрабатываемой программы:
- •4. Фрагментация памяти
- •4.2.1 Регистровые окна ( register window )
- •Системный стек
- •Виртуальная память.
- •Базирование адресов.
- •Страничная память.
- •Многомашинные, многопроцессорные ассоциации.
- •Терминальные комплексы
- •Компьютерные сети.
- •Семейство протоколов tcp/ip
- •Ip адрес представляется последовательностью четырех байтов. В адресе кодируется уникальный номер сети, а также номер компьютера (сетевого устройства в сети).
- •Транспортный уровень
- •Уровень прикладных программ
- •Сетевые, распределенные ос
- •Операционные системы Основные понятия
- •Структура ос.
- •Модельная ос
- •Жизненный цикл процесса
- •Типы операционных систем
- •Системы разделения времени
- •Управление внешними устройствами. Архитектура.
- •Программное управление внешними устройствами
- •Буферизация обмена
- •Планирование дисковых обменов
- •Raid системы.
- •Файлы устройств, драйверы
- •Управление оперативной памятью
- •Двухуровневая организация
- •Структурная организация файлов
- •Атрибуты файла
- •Типовые программные интерфейсы работы с файлами
- •Подходы в практической реализации файловой системы Структура «системного» диска
- •Модели реализации файлов Непрерывные файлы
- •Файлы, имеющие организацию связанного списка.
- •Индексные узлы (дескрипторы)
- •Модели организации каталогов
- •Варианты соответствия: имя файла – содержимое файла
- •Координация использования пространства внешней памяти
- •Учет свободных блоков файловой системы Связный список свободных блоков
- •Использование битового массива
- •Организация фс Unix
- •Логическая структура каталогов
- •Внутренняя организация фс Модель версии System V Структура фс
- •Работа с массивами номеров свободных блоков
- •Работа с массивом свободных ид
- •Индексные дескрипторы
- •Адресация блоков файла
- •Файл каталог
- •Установление связей
- •Недостатки фс модели версии System V
- •Модель версии ffs bsd
- •Стратегии размещения
- •Внутренняя организация блоков
- •Структура каталога ffs
- •Понятие «процесс».
- •Процессы в ос Unix Системно-ориентированное определение процесса
- •Базовые средства организации и управления процессами
- •Семейство системных вызовов exec()
- •Использование схемы fork-exec
- •Формирование процессов 0 и 1
- •. Планирование Основные задачи планирования
- •Планирование очереди процессов на начало обработки
- •Кванты постоянной длины.
- •Кванты переменной длины
- •Класс подходов, использующих линейно возрастающий приоритет.
- •Разновидности круговорота.
- •Смешанные алгоритмы планирования
- •Планирование в системах реального времени
- •Общие критерии для сравнения алгоритмов планирования
- •Планирование в ос unix
- •Планирование в Windows nt.
- •Планирование свопинга в ос Unix
- •Взаимодействие процессов: синхронизация, тупики Параллельные процессы
- •Проблемы организации взаимного исключения
- •Тупики (deadlocks)
- •Способы реализации взаимного исключения
- •Семафоры Дейкстры
- •Мониторы
- •Обмен сообщениями
- •Классические задачи синхронизации процессов
- •Задача «читателей и писателей»
- •Задача о «спящем парикмахере»
- •Реализация взаимодействия процессов
- •Сигналы
- •Системный вызов kill()
- •Системный вызов signal()
- •Пример 1.
- •Пример 2.
- •5 Пример. Программа “Будильник”.
- •Пример. Двухпроцессный вариант программы “Будильник”.
- •Пример. Использование канала.
- •Пример. Схема взаимодействия процессов с использованием канала.
- •Пример. Реализация конвейера.
- •Пример. Совместное использование сигналов и каналов – «пинг-понг».
- •Именованные каналы. Особенность именованных каналов в ос Unix.
- •Пример. «Клиент-сервер».
- •Межпроцессное взаимодействие, проводимое по модели «главный-подчинённый».
- •Системный вызов ptrace()
- •Общая схема трассировки процессов
- •Пример. Использование трассировки.
- •Система межпроцессного взаимодействия ipc.
- •Очередь сообщений
- •Системный вызов msgget()
- •Функция msgsnd()
- •Функция msgrcv()
- •Функция msgctl()
- •Пример. Использование очереди сообщений.
- •Пример. Очередь сообщений. Модель «клиент-сервер».
- •Разделяемая память.
- •Пример. Работа с общей памятью в рамках одного процесса.
- •Семафоры
- •Пример. Использование разделяемой памяти и семафоров.
- •1Й процесс:
- •2Й процесс:
- •Механизм сокетов
- •Типы сокетов.
- •Функция создания сокета
- •Запрос на соединение
- •Прослушивание сокета
- •Подтверждение соединения
- •Прием и передача данных
- •Закрытие сокета
- •Пример. Работа с локальными сокетами
- •Пример работы с сокетами в рамках сети.
Типы сокетов.
Сокеты подразделяются на несколько типов в зависимости от типа коммуникационного соединения, который они используют. Два основных типа коммуникационных соединений и, соответственно, сокетов представляет собой соединение с использованием виртуального канала и датаграммное соединение.
Соединение с использованием виртуального канала
Последовательный поток байтов, гарантирующий надежную доставку сообщений с сохранением порядка их следования. Данные начинают передаваться только после того, как виртуальный канал установлен, и канал не разрывается, пока все данные не будут переданы.
Примером соединения с установлением виртуального канала является механизм каналов в UNIX, аналогом такого соединения из реальной жизни также является телефонный разговор. Заметим, что границы сообщений при таком виде соединений не сохраняются, т.е. приложение, получающее данные, должно само определять, где заканчивается одно сообщение и начинается следующее. Такой тип соединения может также поддерживать передачу экстренных сообщений вне основного потока данных, если это возможно при использовании конкретного выбранного протокола.
Соединение с использованием виртуального канала соответствует протоколу TCP.
Датаграммное соединение используется для передачи отдельных пакетов, содержащих порции данных – датаграмм. Для датаграмм не гарантируется доставка в том же порядке, в каком они были посланы. Вообще говоря, для них не гарантируется доставка вообще, надежность соединения в этом случае ниже, чем при установлении виртуального канала. Однако датаграммные соединения, как правило, более быстрые. Примером датаграммного соединения из реальной жизни может служить обычная почта: письма и посылки могут приходить адресату не в том порядке, в каком они были посланы, а некоторые из них могут и совсем пропадать.
Датаграммное соединение соответствует протоколу UDP.
Поскольку сокеты используются как для локального, так и для удаленного взаимодействия, встает вопрос о пространстве адресов сокетов.
Система сокетов позволяет по одним и тем же структурным последовательности системных вызовов организовать взаимодействие процессов как на отдельно взятом компьютере, так и в сети.
Поскольку сокеты могут использоваться как для локального, так и для удаленного взаимодействия, встает вопрос о пространстве адресов сокетов. При создании сокета указывается коммуникационный домен, к которому данный сокет будет принадлежать. Коммуникационный домен определяет форматы адресов и правила их интерпретации. Мы будем рассматривать два основных домена: для локального взаимодействия – домен AF_UNIX и для взаимодействия в рамках сети – домен AF_INET (префикс AF обозначает сокращение от address family – семейство адресов). В домене AF_UNIX формат адреса – это допустимое имя файла, в домене AF_INET адрес образуют имя хоста + номер порта.
Заметим, что фактически коммуникационный домен определяет также используемые семейства протоколов. Так, для домена AF_UNIX это будут внутренние протоколы ОС, для домена AF_INET – протоколы семейства TCP/IP. BSD UNIX поддерживает также третий домен – AF_NS, использующий протоколы удаленного взаимодействия Xerox NS, но мы его рассматривать не будем.
