- •Конспект по курсу лекций Операционные системы
- •Структура вычислительной системы
- •Аппаратный уровень вычислительной системы
- •Системы программирования
- •Модель организации прерываний с использованием регистра «слово состояние процессора»
- •3.6.1.1 Устройство последовательного доступа
- •Организация управления внешними устройствами
- •Иерархия памяти
- •Аппаратная поддержка ос и систем программирования
- •Некоторые проблемы
- •1. Вложенные обращения к подпрограммам
- •2. Накладные расходы при смене обрабатываемой программы:
- •4. Фрагментация памяти
- •4.2.1 Регистровые окна ( register window )
- •Системный стек
- •Виртуальная память.
- •Базирование адресов.
- •Страничная память.
- •Многомашинные, многопроцессорные ассоциации.
- •Терминальные комплексы
- •Компьютерные сети.
- •Семейство протоколов tcp/ip
- •Ip адрес представляется последовательностью четырех байтов. В адресе кодируется уникальный номер сети, а также номер компьютера (сетевого устройства в сети).
- •Транспортный уровень
- •Уровень прикладных программ
- •Сетевые, распределенные ос
- •Операционные системы Основные понятия
- •Структура ос.
- •Модельная ос
- •Жизненный цикл процесса
- •Типы операционных систем
- •Системы разделения времени
- •Управление внешними устройствами. Архитектура.
- •Программное управление внешними устройствами
- •Буферизация обмена
- •Планирование дисковых обменов
- •Raid системы.
- •Файлы устройств, драйверы
- •Управление оперативной памятью
- •Двухуровневая организация
- •Структурная организация файлов
- •Атрибуты файла
- •Типовые программные интерфейсы работы с файлами
- •Подходы в практической реализации файловой системы Структура «системного» диска
- •Модели реализации файлов Непрерывные файлы
- •Файлы, имеющие организацию связанного списка.
- •Индексные узлы (дескрипторы)
- •Модели организации каталогов
- •Варианты соответствия: имя файла – содержимое файла
- •Координация использования пространства внешней памяти
- •Учет свободных блоков файловой системы Связный список свободных блоков
- •Использование битового массива
- •Организация фс Unix
- •Логическая структура каталогов
- •Внутренняя организация фс Модель версии System V Структура фс
- •Работа с массивами номеров свободных блоков
- •Работа с массивом свободных ид
- •Индексные дескрипторы
- •Адресация блоков файла
- •Файл каталог
- •Установление связей
- •Недостатки фс модели версии System V
- •Модель версии ffs bsd
- •Стратегии размещения
- •Внутренняя организация блоков
- •Структура каталога ffs
- •Понятие «процесс».
- •Процессы в ос Unix Системно-ориентированное определение процесса
- •Базовые средства организации и управления процессами
- •Семейство системных вызовов exec()
- •Использование схемы fork-exec
- •Формирование процессов 0 и 1
- •. Планирование Основные задачи планирования
- •Планирование очереди процессов на начало обработки
- •Кванты постоянной длины.
- •Кванты переменной длины
- •Класс подходов, использующих линейно возрастающий приоритет.
- •Разновидности круговорота.
- •Смешанные алгоритмы планирования
- •Планирование в системах реального времени
- •Общие критерии для сравнения алгоритмов планирования
- •Планирование в ос unix
- •Планирование в Windows nt.
- •Планирование свопинга в ос Unix
- •Взаимодействие процессов: синхронизация, тупики Параллельные процессы
- •Проблемы организации взаимного исключения
- •Тупики (deadlocks)
- •Способы реализации взаимного исключения
- •Семафоры Дейкстры
- •Мониторы
- •Обмен сообщениями
- •Классические задачи синхронизации процессов
- •Задача «читателей и писателей»
- •Задача о «спящем парикмахере»
- •Реализация взаимодействия процессов
- •Сигналы
- •Системный вызов kill()
- •Системный вызов signal()
- •Пример 1.
- •Пример 2.
- •5 Пример. Программа “Будильник”.
- •Пример. Двухпроцессный вариант программы “Будильник”.
- •Пример. Использование канала.
- •Пример. Схема взаимодействия процессов с использованием канала.
- •Пример. Реализация конвейера.
- •Пример. Совместное использование сигналов и каналов – «пинг-понг».
- •Именованные каналы. Особенность именованных каналов в ос Unix.
- •Пример. «Клиент-сервер».
- •Межпроцессное взаимодействие, проводимое по модели «главный-подчинённый».
- •Системный вызов ptrace()
- •Общая схема трассировки процессов
- •Пример. Использование трассировки.
- •Система межпроцессного взаимодействия ipc.
- •Очередь сообщений
- •Системный вызов msgget()
- •Функция msgsnd()
- •Функция msgrcv()
- •Функция msgctl()
- •Пример. Использование очереди сообщений.
- •Пример. Очередь сообщений. Модель «клиент-сервер».
- •Разделяемая память.
- •Пример. Работа с общей памятью в рамках одного процесса.
- •Семафоры
- •Пример. Использование разделяемой памяти и семафоров.
- •1Й процесс:
- •2Й процесс:
- •Механизм сокетов
- •Типы сокетов.
- •Функция создания сокета
- •Запрос на соединение
- •Прослушивание сокета
- •Подтверждение соединения
- •Прием и передача данных
- •Закрытие сокета
- •Пример. Работа с локальными сокетами
- •Пример работы с сокетами в рамках сети.
Межпроцессное взаимодействие, проводимое по модели «главный-подчинённый».
Последнее средство, которое будет рассмотрено в рамках этой темы – это модель взаимодействия «главный-подчиненный». До сих пор все модели взаимодействия между процессами были равноправны, возможно, они выполняли разные функции: кто-то читал данные, а кто-то являлся отправителем, но так или иначе процессы были равноправными. Схема «главный-подчиненный» предполагает, что один из процессов является главным, т.е. управляет поведением другого процесса. В системе Unix к такой модели относится трассировка, т.е. отладка процессов. Трассировка осуществляется двумя процессами, которые родственны между собой. В ОС Unix возможна трассировка только непосредственно своего потомка, при этом трассирующий процесс управляет поведением, выполнением трассируемого процесса. При этом процесс-потомок, которого мы собираемся отлаживать, предварительно должен дать разрешение на трассировку. После того, как процесс-потомок разрешил трассировку, как правило, происходит замена тела этот потомка на ту программу, которую необходимо отладить.
Далее схема взаимодействия процессов путем трассировки такова: выполнение отлаживаемого процесса-потомка приостанавливается всякий раз при получении им какого-либо сигнала, а также при выполнении вызова exec(). Если в это время отлаживающий процесс осуществляет системный вызов wait(), этот вызов немедленно возвращает управление. В то время, как трассируемый процесс находится в приостановленном состоянии, процесс-отладчик имеет возможность анализировать и изменять данные в адресном пространстве отлаживаемого процесса и в пользовательской составляющей его контекста. Далее, процесс-отладчик возобновляет выполнение трассируемого процесса до следующего приостановка (либо, при пошаговом выполнении, для выполнения одной инструкции).
Системный вызов ptrace()
Основной системный вызов, используемый при трассировке,– это ptrace(), прототип которого выглядит следующим образом:
#include <sys/ptrace.h>
int ptrace(int cmd, pid, addr, data)
cmd – код выполняемой команды,
pid – идентификатор процесса-потомка,
addr – некоторый адрес в адресном пространстве процесса-потомка,
data – слово информации.
рассмотрим основные коды - cmd операций этой функции.
cmd = PTRACE_TRACEME — ptrace() с таким кодом операции сыновний процесс вызывает в самом начале своей работы, позволяя тем самым трассировать себя. Все остальные обращения к вызову ptrace() осуществляет процесс-отладчик.
cmd = PTRACE_PEEKDATA - чтение слова из адресного пространства отлаживаемого процесса по адресу addr , ptrace() возвращает значение этого слова.
cmd = PTRACE_PEEKUSER — чтение слова из контекста процесса. Речь идет о доступе к пользовательской составляющей контекста данного процесса, сгруппированной в некоторую структуру, описанную в заголовочном файле <sys/user.h>. В этом случае параметр addr указывает смещение относительно начала этой структуры. В этой структуре размещена такая информация, как регистры, текущее состояние процесса, счетчик адреса и так далее. ptrace() возвращает значение считанного слова.
cmd = PTRACE_POKEDATA — запись данных, размещенных в параметре data, по адресу addr в адресном пространстве процесса-потомка.
cmd = PTRACE_POKEUSER — запись слова из data в контекст трассируемого процесса со смещением addr. Таким образом можно, например, изменить счетчик адреса трассируемого процесса, и при последующем возобновлении трассируемого процесса его выполнение начнется с инструкции, находящейся по заданному адресу.
cmd = PTRACE_GETREGS, PTRACE_GETFREGS — чтение регистров общего назначения (в т.ч. с плавающей точкой) трассируемого процесса и запись их значения по адресу data.
cmd = PTRACE_SETREGS, PTRACE_SETFREGS — запись в регистры общего назначения (в т.ч. с плавающей точкой) трассируемого процесса данных, расположенных по адресу data в трассирующем процессе.
cmd = PTRACE_CONT — возобновление выполнения трассируемого процесса. Отлаживаемый процесс будет выполняться до тех пор, пока не получит какой-либо сигнал, либо пока не завершится.
cmd = PTRACE_SYSCALL, PTRACE_SINGLESTEP — эта команда, аналогично PTRACE_CONT, возобновляет выполнение трассируемой программы, но при этом произойдет ее остановка после того, как выполнится одна инструкция. Таким образом, используя PTRACE_SINGLESTEP, можно организовать пошаговую отладку. С помощью команды PTRACE_SYSCALL возобновляется выполнение трассируемой программы вплоть до ближайшего входа или выхода из системного вызова. Идея использования PTRACE_SYSCALL в том, чтобы иметь возможность контролировать значения аргументов, переданных в системный вызов трассируемым процессом, и возвращаемое значение, переданное ему из системного вызова.
cmd = PTRACE_KILL — завершение выполнения трассируемого процесса.
