- •Конспект по курсу лекций Операционные системы
- •Структура вычислительной системы
- •Аппаратный уровень вычислительной системы
- •Системы программирования
- •Модель организации прерываний с использованием регистра «слово состояние процессора»
- •3.6.1.1 Устройство последовательного доступа
- •Организация управления внешними устройствами
- •Иерархия памяти
- •Аппаратная поддержка ос и систем программирования
- •Некоторые проблемы
- •1. Вложенные обращения к подпрограммам
- •2. Накладные расходы при смене обрабатываемой программы:
- •4. Фрагментация памяти
- •4.2.1 Регистровые окна ( register window )
- •Системный стек
- •Виртуальная память.
- •Базирование адресов.
- •Страничная память.
- •Многомашинные, многопроцессорные ассоциации.
- •Терминальные комплексы
- •Компьютерные сети.
- •Семейство протоколов tcp/ip
- •Ip адрес представляется последовательностью четырех байтов. В адресе кодируется уникальный номер сети, а также номер компьютера (сетевого устройства в сети).
- •Транспортный уровень
- •Уровень прикладных программ
- •Сетевые, распределенные ос
- •Операционные системы Основные понятия
- •Структура ос.
- •Модельная ос
- •Жизненный цикл процесса
- •Типы операционных систем
- •Системы разделения времени
- •Управление внешними устройствами. Архитектура.
- •Программное управление внешними устройствами
- •Буферизация обмена
- •Планирование дисковых обменов
- •Raid системы.
- •Файлы устройств, драйверы
- •Управление оперативной памятью
- •Двухуровневая организация
- •Структурная организация файлов
- •Атрибуты файла
- •Типовые программные интерфейсы работы с файлами
- •Подходы в практической реализации файловой системы Структура «системного» диска
- •Модели реализации файлов Непрерывные файлы
- •Файлы, имеющие организацию связанного списка.
- •Индексные узлы (дескрипторы)
- •Модели организации каталогов
- •Варианты соответствия: имя файла – содержимое файла
- •Координация использования пространства внешней памяти
- •Учет свободных блоков файловой системы Связный список свободных блоков
- •Использование битового массива
- •Организация фс Unix
- •Логическая структура каталогов
- •Внутренняя организация фс Модель версии System V Структура фс
- •Работа с массивами номеров свободных блоков
- •Работа с массивом свободных ид
- •Индексные дескрипторы
- •Адресация блоков файла
- •Файл каталог
- •Установление связей
- •Недостатки фс модели версии System V
- •Модель версии ffs bsd
- •Стратегии размещения
- •Внутренняя организация блоков
- •Структура каталога ffs
- •Понятие «процесс».
- •Процессы в ос Unix Системно-ориентированное определение процесса
- •Базовые средства организации и управления процессами
- •Семейство системных вызовов exec()
- •Использование схемы fork-exec
- •Формирование процессов 0 и 1
- •. Планирование Основные задачи планирования
- •Планирование очереди процессов на начало обработки
- •Кванты постоянной длины.
- •Кванты переменной длины
- •Класс подходов, использующих линейно возрастающий приоритет.
- •Разновидности круговорота.
- •Смешанные алгоритмы планирования
- •Планирование в системах реального времени
- •Общие критерии для сравнения алгоритмов планирования
- •Планирование в ос unix
- •Планирование в Windows nt.
- •Планирование свопинга в ос Unix
- •Взаимодействие процессов: синхронизация, тупики Параллельные процессы
- •Проблемы организации взаимного исключения
- •Тупики (deadlocks)
- •Способы реализации взаимного исключения
- •Семафоры Дейкстры
- •Мониторы
- •Обмен сообщениями
- •Классические задачи синхронизации процессов
- •Задача «читателей и писателей»
- •Задача о «спящем парикмахере»
- •Реализация взаимодействия процессов
- •Сигналы
- •Системный вызов kill()
- •Системный вызов signal()
- •Пример 1.
- •Пример 2.
- •5 Пример. Программа “Будильник”.
- •Пример. Двухпроцессный вариант программы “Будильник”.
- •Пример. Использование канала.
- •Пример. Схема взаимодействия процессов с использованием канала.
- •Пример. Реализация конвейера.
- •Пример. Совместное использование сигналов и каналов – «пинг-понг».
- •Именованные каналы. Особенность именованных каналов в ос Unix.
- •Пример. «Клиент-сервер».
- •Межпроцессное взаимодействие, проводимое по модели «главный-подчинённый».
- •Системный вызов ptrace()
- •Общая схема трассировки процессов
- •Пример. Использование трассировки.
- •Система межпроцессного взаимодействия ipc.
- •Очередь сообщений
- •Системный вызов msgget()
- •Функция msgsnd()
- •Функция msgrcv()
- •Функция msgctl()
- •Пример. Использование очереди сообщений.
- •Пример. Очередь сообщений. Модель «клиент-сервер».
- •Разделяемая память.
- •Пример. Работа с общей памятью в рамках одного процесса.
- •Семафоры
- •Пример. Использование разделяемой памяти и семафоров.
- •1Й процесс:
- •2Й процесс:
- •Механизм сокетов
- •Типы сокетов.
- •Функция создания сокета
- •Запрос на соединение
- •Прослушивание сокета
- •Подтверждение соединения
- •Прием и передача данных
- •Закрытие сокета
- •Пример. Работа с локальными сокетами
- •Пример работы с сокетами в рамках сети.
Взаимодействие процессов: синхронизация, тупики Параллельные процессы
Процессы, выполнение которых хотя бы частично перекрывается по времени, называются параллельными процессами
В однопроцессорной системе имеет место так называемый псевдопараллелизм, т.е. параллельные процессы в действительности в каждый момент времени исполняется только один раз, однако несколько процессов находятся в состоянии выполнения, т.е. они выполняются по очереди и за счет быстрого переключения процессов между ними создается иллюзия параллелизма. Все такие процессы, которые все время находятся в буфере выполняемых процессов, будем называть параллельными. Действительный параллелизм может иметь место, когда на разных ЦП одновременно выполняются разные задачи. Для нас с точки зрения задач взаимодействия параллельных процессов и синхронизации их работы такие случаи ничем друг от друга не отличаются.
Они могут быть независимыми и взаимодействующими.
Независимые процессы – процессы, использующие независимое множество ресурсов и на результат работы такого процесса не влияет работа независимого от него процесса.
Взаимодействующие процессы совместно используют ресурсы, и выполнение одного может оказывать влияние на результат другого.
Совместное использование несколькими процессами ресурса ВС, когда каждый из процессов одновременно владеет ресурсом называют разделением ресурса.
Разделению подлежат как аппаратные, так программные ресурсы.
Разделяемые ресурсы, которые должны быть доступны в текущий момент времени только одному процессу – это так называемые критические ресурсы. Таковыми ресурсами могут быть, как внешнее устройство, так и некая переменная, значение которой может изменяться разными процессами.
Необходимо уметь решать две важнейшие задачи:
1. Распределение ресурсов между процессами.
2. Организация защиты адресного пространства и других ресурсов, выделенных определенному процессу, от неконтролируемого доступа со стороны других процессов.
Важнейшим требованием мультипрограммирования с точки зрения распределения ресурсов является следующее: результат выполнения процесса не должен зависеть от порядка переключения выполнения между процессами, т.е. от соотношения скорости выполнения процесса со скоростями выполнения других процессов.
Рассмотрим пример ситуации, в которой нарушается требование мультипрограммирования.
Посмотрим на рисунок и представить себе, что время идет сверху вниз. Оба процесса выполняют некоторую условную функцию if, в которой есть условный input (ввод некоторого символа) и условный output (вывод этой же переменной) понятно, что реализация этих функций нас сейчас не очень волнует, нас волнует в первую очередь то, что сейчас произойдет. Видно, что при такой ситуации у нас получается, что процесс А считал в разделяемую переменную in некоторый символ, после чего управление было передано на процесс В, и процесс В затер значение, которое считал процесс А. После чего он вывел новое значение, управление опять было передано процессу А, и процесс А вывел значение, не то которое он считал, а то, которое было затерто уже процессом В. Т.е. один из символов просто потерялся, в то время как другой был выведен дважды. Здесь предполагается, что in – это некоторая разделяемая переменная, т.е. некоторый разделяемый ресурс. В данном случае эта переменная и будет разделяемым физическим ресурсом
Такие ситуации называются гонками (race conditions) между процессами, а процессы – конкурирующими.
Часть программы (фактически набор операций), в которой осуществляется работа с критическим ресурсом, называется критической секцией, или критическим интервалом.
Единственный способ избежать гонок при использовании разделяемых ресурсов – контролировать доступ к любым разделяемым ресурсам в системе. При этом необходимо организовать взаимное исключение – т.е. такой способ работы с разделяемым ресурсом, при котором постулируется, что в тот момент, когда один из процессов работает с разделяемым ресурсом, все остальные процессы не могут иметь к нему доступ.
Заметим, что вопрос организации взаимного исключения актуален не только для взаимосвязанных процессов, совместно использующих определенные ресурсы для обмена информацией. Возможна ситуация, когда процессы, не подозревающие о существовании друг друга, используют глобальные ресурсы системы, такие как устройства ввода/вывода, принтеры и т.п. В с этом случае имеет место конкуренция за ресурсы, доступ к которым также должен быть организован по принципу взаимного исключения.
