
- •Конспект по курсу лекций Операционные системы
- •Структура вычислительной системы
- •Аппаратный уровень вычислительной системы
- •Системы программирования
- •Модель организации прерываний с использованием регистра «слово состояние процессора»
- •3.6.1.1 Устройство последовательного доступа
- •Организация управления внешними устройствами
- •Иерархия памяти
- •Аппаратная поддержка ос и систем программирования
- •Некоторые проблемы
- •1. Вложенные обращения к подпрограммам
- •2. Накладные расходы при смене обрабатываемой программы:
- •4. Фрагментация памяти
- •4.2.1 Регистровые окна ( register window )
- •Системный стек
- •Виртуальная память.
- •Базирование адресов.
- •Страничная память.
- •Многомашинные, многопроцессорные ассоциации.
- •Терминальные комплексы
- •Компьютерные сети.
- •Семейство протоколов tcp/ip
- •Ip адрес представляется последовательностью четырех байтов. В адресе кодируется уникальный номер сети, а также номер компьютера (сетевого устройства в сети).
- •Транспортный уровень
- •Уровень прикладных программ
- •Сетевые, распределенные ос
- •Операционные системы Основные понятия
- •Структура ос.
- •Модельная ос
- •Жизненный цикл процесса
- •Типы операционных систем
- •Системы разделения времени
- •Управление внешними устройствами. Архитектура.
- •Программное управление внешними устройствами
- •Буферизация обмена
- •Планирование дисковых обменов
- •Raid системы.
- •Файлы устройств, драйверы
- •Управление оперативной памятью
- •Двухуровневая организация
- •Структурная организация файлов
- •Атрибуты файла
- •Типовые программные интерфейсы работы с файлами
- •Подходы в практической реализации файловой системы Структура «системного» диска
- •Модели реализации файлов Непрерывные файлы
- •Файлы, имеющие организацию связанного списка.
- •Индексные узлы (дескрипторы)
- •Модели организации каталогов
- •Варианты соответствия: имя файла – содержимое файла
- •Координация использования пространства внешней памяти
- •Учет свободных блоков файловой системы Связный список свободных блоков
- •Использование битового массива
- •Организация фс Unix
- •Логическая структура каталогов
- •Внутренняя организация фс Модель версии System V Структура фс
- •Работа с массивами номеров свободных блоков
- •Работа с массивом свободных ид
- •Индексные дескрипторы
- •Адресация блоков файла
- •Файл каталог
- •Установление связей
- •Недостатки фс модели версии System V
- •Модель версии ffs bsd
- •Стратегии размещения
- •Внутренняя организация блоков
- •Структура каталога ffs
- •Понятие «процесс».
- •Процессы в ос Unix Системно-ориентированное определение процесса
- •Базовые средства организации и управления процессами
- •Семейство системных вызовов exec()
- •Использование схемы fork-exec
- •Формирование процессов 0 и 1
- •. Планирование Основные задачи планирования
- •Планирование очереди процессов на начало обработки
- •Кванты постоянной длины.
- •Кванты переменной длины
- •Класс подходов, использующих линейно возрастающий приоритет.
- •Разновидности круговорота.
- •Смешанные алгоритмы планирования
- •Планирование в системах реального времени
- •Общие критерии для сравнения алгоритмов планирования
- •Планирование в ос unix
- •Планирование в Windows nt.
- •Планирование свопинга в ос Unix
- •Взаимодействие процессов: синхронизация, тупики Параллельные процессы
- •Проблемы организации взаимного исключения
- •Тупики (deadlocks)
- •Способы реализации взаимного исключения
- •Семафоры Дейкстры
- •Мониторы
- •Обмен сообщениями
- •Классические задачи синхронизации процессов
- •Задача «читателей и писателей»
- •Задача о «спящем парикмахере»
- •Реализация взаимодействия процессов
- •Сигналы
- •Системный вызов kill()
- •Системный вызов signal()
- •Пример 1.
- •Пример 2.
- •5 Пример. Программа “Будильник”.
- •Пример. Двухпроцессный вариант программы “Будильник”.
- •Пример. Использование канала.
- •Пример. Схема взаимодействия процессов с использованием канала.
- •Пример. Реализация конвейера.
- •Пример. Совместное использование сигналов и каналов – «пинг-понг».
- •Именованные каналы. Особенность именованных каналов в ос Unix.
- •Пример. «Клиент-сервер».
- •Межпроцессное взаимодействие, проводимое по модели «главный-подчинённый».
- •Системный вызов ptrace()
- •Общая схема трассировки процессов
- •Пример. Использование трассировки.
- •Система межпроцессного взаимодействия ipc.
- •Очередь сообщений
- •Системный вызов msgget()
- •Функция msgsnd()
- •Функция msgrcv()
- •Функция msgctl()
- •Пример. Использование очереди сообщений.
- •Пример. Очередь сообщений. Модель «клиент-сервер».
- •Разделяемая память.
- •Пример. Работа с общей памятью в рамках одного процесса.
- •Семафоры
- •Пример. Использование разделяемой памяти и семафоров.
- •1Й процесс:
- •2Й процесс:
- •Механизм сокетов
- •Типы сокетов.
- •Функция создания сокета
- •Запрос на соединение
- •Прослушивание сокета
- •Подтверждение соединения
- •Прием и передача данных
- •Закрытие сокета
- •Пример. Работа с локальными сокетами
- •Пример работы с сокетами в рамках сети.
Кванты постоянной длины.
•
Время
ожидания кванта процессом ~ q(n-1)
•Параметры: длина очереди и величина кванта.
•Дисциплина обслуживания очереди, например, FIFO.
•Переключение процессов – операция, требующая времени.
Проблема: как определить длину кванта. Слишком маленький – не хватит времени на переключение, большой - некоторые успеют выполниться полностью.
Кванты переменной длины
Величина кванта может меняться со временем
• Вначале «большой» квант q=A,на следующем шаге q=A-t, q=A-2t,…, до q=B (B<A). Преимущество для коротких задач.
• Вначале q=B, далее q=B+t,…, до q=A. Уменьшение накладных расходов на переключение задач, когда несколько задач выполняют длительные вычисления.
Если процесс интенсивно пользуется операциями ввода/вывода, то он может использовать выделенный квант не до конца. В качестве компенсации ему могут предоставляться привилегии при дальнейшем обслуживании.
Квантование с предпочтением процессам, интенсивно обращающихся к вводу/выводу
Дисциплина обслуживания очередей следующая: сначала выбирается процесс из очереди процессов, закончивших ввод/вывод.
Делаются 2 очереди готовых процессов: одна из процессов, обращающихся часто к устройствам ввода\вывода. Вторая – для тех, кто основную часть времени считается на процессоре.
Рассмотренные алгоритмы, основанные на квантовании, не используют никакой предварительной информации о процессах.
Рассмотренные примеры алгоритмов относятся к классу вытесняющих.
Вытесняющая стратегия используется в системах разделения времени.
Алгоритмы, основанные на приоритетах
Приоритет может быть статическим , например для процесса ядра, и динамическим – для пользовательских процессов. Динамический приоритет формируется в процессе счета как функция от времени нахождения процесса в различных очередях и др.
Вычисление приоритета основывается на статических и динамических характеристиках. Изменение приоритета может происходить по инициативе процесса, пользователя, ОС. Правила назначения приоритета процессов определяют эффективность работы системы.
Планирование по наивысшему приоритету (highest priority first - HPF).
При появлении в очереди готовых процессов процесса с более высоким приоритетом, чем у текущего наступает момент смены процесса. Смена ппроцесса происходит либо в тот же момент, когда приоритет произвольного процесса стал больше чем приоритет считающегося, либо после того, когда закончится квант времени считающегося.
Возможно два варианта:
- относительный приоритет (ожидание исчерпания кванта у текущего процесса)
Смена ппроцесса происходит либо в тот же момент, когда приоритет произвольного процесса стал больше чем
приоритет считающегося. Хорошо для пакетных систем.
- абсолютный приоритет (немедленная смена текущего процесса)
Смена ппроцесса происходит после того, когда закончится квант времени считающегося. Хорошо для тех систем,
где необходима быстрвая реакция на что-ибо
Задача выбора/постановки процесса с наивысшим приоритетом зависит от организации очереди (упорядочена/неупорядочена).
Возможно наличие очередей с одинаковым приоритетом.
Пример использования стратегии HPF.
Выбор самого короткого задания (shortest job first - SJF).
Время выполнения – характеристика, на которой основан приоритет. Приоритет обратно пропорционален ожидаемому времени обработки.
Этот вариант
удобен для “коротких” процессов.