
- •Конспект по курсу лекций Операционные системы
- •Структура вычислительной системы
- •Аппаратный уровень вычислительной системы
- •Системы программирования
- •Модель организации прерываний с использованием регистра «слово состояние процессора»
- •3.6.1.1 Устройство последовательного доступа
- •Организация управления внешними устройствами
- •Иерархия памяти
- •Аппаратная поддержка ос и систем программирования
- •Некоторые проблемы
- •1. Вложенные обращения к подпрограммам
- •2. Накладные расходы при смене обрабатываемой программы:
- •4. Фрагментация памяти
- •4.2.1 Регистровые окна ( register window )
- •Системный стек
- •Виртуальная память.
- •Базирование адресов.
- •Страничная память.
- •Многомашинные, многопроцессорные ассоциации.
- •Терминальные комплексы
- •Компьютерные сети.
- •Семейство протоколов tcp/ip
- •Ip адрес представляется последовательностью четырех байтов. В адресе кодируется уникальный номер сети, а также номер компьютера (сетевого устройства в сети).
- •Транспортный уровень
- •Уровень прикладных программ
- •Сетевые, распределенные ос
- •Операционные системы Основные понятия
- •Структура ос.
- •Модельная ос
- •Жизненный цикл процесса
- •Типы операционных систем
- •Системы разделения времени
- •Управление внешними устройствами. Архитектура.
- •Программное управление внешними устройствами
- •Буферизация обмена
- •Планирование дисковых обменов
- •Raid системы.
- •Файлы устройств, драйверы
- •Управление оперативной памятью
- •Двухуровневая организация
- •Структурная организация файлов
- •Атрибуты файла
- •Типовые программные интерфейсы работы с файлами
- •Подходы в практической реализации файловой системы Структура «системного» диска
- •Модели реализации файлов Непрерывные файлы
- •Файлы, имеющие организацию связанного списка.
- •Индексные узлы (дескрипторы)
- •Модели организации каталогов
- •Варианты соответствия: имя файла – содержимое файла
- •Координация использования пространства внешней памяти
- •Учет свободных блоков файловой системы Связный список свободных блоков
- •Использование битового массива
- •Организация фс Unix
- •Логическая структура каталогов
- •Внутренняя организация фс Модель версии System V Структура фс
- •Работа с массивами номеров свободных блоков
- •Работа с массивом свободных ид
- •Индексные дескрипторы
- •Адресация блоков файла
- •Файл каталог
- •Установление связей
- •Недостатки фс модели версии System V
- •Модель версии ffs bsd
- •Стратегии размещения
- •Внутренняя организация блоков
- •Структура каталога ffs
- •Понятие «процесс».
- •Процессы в ос Unix Системно-ориентированное определение процесса
- •Базовые средства организации и управления процессами
- •Семейство системных вызовов exec()
- •Использование схемы fork-exec
- •Формирование процессов 0 и 1
- •. Планирование Основные задачи планирования
- •Планирование очереди процессов на начало обработки
- •Кванты постоянной длины.
- •Кванты переменной длины
- •Класс подходов, использующих линейно возрастающий приоритет.
- •Разновидности круговорота.
- •Смешанные алгоритмы планирования
- •Планирование в системах реального времени
- •Общие критерии для сравнения алгоритмов планирования
- •Планирование в ос unix
- •Планирование в Windows nt.
- •Планирование свопинга в ос Unix
- •Взаимодействие процессов: синхронизация, тупики Параллельные процессы
- •Проблемы организации взаимного исключения
- •Тупики (deadlocks)
- •Способы реализации взаимного исключения
- •Семафоры Дейкстры
- •Мониторы
- •Обмен сообщениями
- •Классические задачи синхронизации процессов
- •Задача «читателей и писателей»
- •Задача о «спящем парикмахере»
- •Реализация взаимодействия процессов
- •Сигналы
- •Системный вызов kill()
- •Системный вызов signal()
- •Пример 1.
- •Пример 2.
- •5 Пример. Программа “Будильник”.
- •Пример. Двухпроцессный вариант программы “Будильник”.
- •Пример. Использование канала.
- •Пример. Схема взаимодействия процессов с использованием канала.
- •Пример. Реализация конвейера.
- •Пример. Совместное использование сигналов и каналов – «пинг-понг».
- •Именованные каналы. Особенность именованных каналов в ос Unix.
- •Пример. «Клиент-сервер».
- •Межпроцессное взаимодействие, проводимое по модели «главный-подчинённый».
- •Системный вызов ptrace()
- •Общая схема трассировки процессов
- •Пример. Использование трассировки.
- •Система межпроцессного взаимодействия ipc.
- •Очередь сообщений
- •Системный вызов msgget()
- •Функция msgsnd()
- •Функция msgrcv()
- •Функция msgctl()
- •Пример. Использование очереди сообщений.
- •Пример. Очередь сообщений. Модель «клиент-сервер».
- •Разделяемая память.
- •Пример. Работа с общей памятью в рамках одного процесса.
- •Семафоры
- •Пример. Использование разделяемой памяти и семафоров.
- •1Й процесс:
- •2Й процесс:
- •Механизм сокетов
- •Типы сокетов.
- •Функция создания сокета
- •Запрос на соединение
- •Прослушивание сокета
- •Подтверждение соединения
- •Прием и передача данных
- •Закрытие сокета
- •Пример. Работа с локальными сокетами
- •Пример работы с сокетами в рамках сети.
Ip адрес представляется последовательностью четырех байтов. В адресе кодируется уникальный номер сети, а также номер компьютера (сетевого устройства в сети).
. Для представление содержимого IP адреса используется последовательность цифр:
N1.N2.N3.N4 ,
где Ni – десятичное представление содержимого i – го байта адреса.
Типы адресов
A номер сети <=126, уникальные сети, которые исторически принадлежат крупным мировым корпорациям.
С самые распространенные.
Некоторые из IP адресов являются зарезервированными, т.е. их интерпретация отличается от стандартной.
Поле номера сети |
Поле номера машины/устройства |
Комментарий |
Все нули |
Все нули |
Адрес данного устройства |
Номер сети |
Все нули |
Ссылка на сеть в целом. |
Все нули |
Номер устройства |
Устройство в данной сети |
Все единицы |
Все единицы |
Все устройства данной сети |
Номер сети |
Все единицы |
Все устройства заданной сети |
127 |
Код |
Используется для отладки и тестирования сетевых приложений (зацикленный адрес - loopback address). При отправке данных по этому адресу, стек протоколов возвращает переданные данные процессу-отправителю. Т.е. происходит эмуляция работы сети, без реального сетевого взаимодействия (взаимодействия между различными стеками протоколов). |
Протоколы TCP/IP были созданы для передачи данных через ARPANET, которая является сетью с коммутацией пакетов.
Пакет – это блок данных, который передаётся вместе с информацией, необходимой для его корректной доставки. Каждый пакет перемещается по сети независимо от остальных.
Дейтаграмма – это пакет протокола IP. Контрольная информация занимает первые пять или шесть 32-битных слов дейтаграммы. Это её заголовок (header). По умолчанию, его длина равна пяти словам, шестое является дополнительным. Для указания точной длины заголовка в нём есть специальное поле – длина заголовка (IHL, Internal Header Length).
Шлюз – устройство, передающее пакеты между различными сетями
Маршрутизация – процесс выбора шлюза или маршрутизатора
Маршрутизация дейтаграмм:
Шлюз – компьютер, который имеет >=2 сетевых адаптеров (каждый имеет свой IP адрес)
Компьютерные системы могут передавать данные только внутри той сети, к которой они подключены. Поэтому передача дейтаграмм из одной сети в другую идёт через шлюзы – от одного к другому. Внутри хоста данные проходят пути от уровня прикладных программ до уровня доступа к сети (и обратно). Дейтаграммы, которые переправляет шлюз, поднимаются только до межсетевого уровня. На этом уровне протокол IP, узнавая адрес получателя данных (на протяжении всего пути следования этот адрес не меняется – меняются промежуточные машины), принимает решение отправить дейтаграмму в одну из сетей, к которым подключен.
На рисунке выше показано, как используются шлюзы для ретрансляции пакетов.