
- •Программируемые цифровые устройства (часть 1) содержание
- •1 Микропроцессор. Основные сведения
- •Основные характеристики мп
- •1.2 Архитектура микропроцессора. Основные понятия
- •1.2.2 Состав типичного микроконтроллера
- •1.3 Структура мп устройства.
- •1.3.1 Мп с микропрограммным управлением (микропрограммируемая архитектура)
- •Структурная схема устройства микропрограммного управления
- •Структура микро эвм с микропрограммным управлением
- •1.4 Запоминающие устройства.
- •1.4.1 Оперативное запоминающее устройство
- •Статическое озу на биполярных и полевых транзисторах
- •1.4.2 Постоянные зу
- •Однократно программируемое пзу
- •1.5 Команды, форматы команд, система команд
- •1.6 Принцип работы микропроцессора.
- •1.6.1 Модель программирования микропроцессора.
- •1.7 Способы адресации
- •1.8 Основы программирования. Ассемблер.
- •1.9 Организация передачи информации в мпс. Интерфейс.
- •2 Архитектура 8- разрядных микроконтроллеров.
- •2.1 Последовательные интерфейсы микропроцессорных систем
- •2.1.1 Последовательный интерфейс rs-232c
- •2.1.2 Шина 1-Wire
- •Формат команды 1-Wire протокола
- •2.1.3 Интерфейс can4
- •Топология сети can.
- •Data frame стандарта can 2.0a.
- •Побитовый арбитраж на шине can.
- •2.2 Организация портов ввода/вывода
- •2.3 Таймеры и процессоры событий
- •2.4 Ввод/вывод аналоговых сигналов
- •Структурная схема типового модуля ацп
- •Цап на основе таймера в режиме шим
- •2.5 Контроллеры последовательного ввода/вывода
- •2.5.1 Модуль последовательного обмена uart
- •Упрощенная структура модуля uart.
- •2.5.2 Последовательный периферийный интерфейс spi
- •2.5.3 Синхронный последовательный интерфейс i2c
- •Временные диаграммы шины i2c
- •Взаимосинхронизация на шине i2c
- •2.6 Минимизация потребления энергии
- •2.7 Повышение надежности работы мк
- •2.7.1 Мониторинг напряжения питания мк
- •Временные диаграммы работы схемы por
- •Переход мк в состояние сброса по сигналам схемы por и модуля пониженного напряжения питания
- •2.7.2 Сторожевой таймер
- •Структурная схема сторожевого таймера
- •Принцип действия сторожевого таймера
- •3 Периферийные устройства
- •3.1 Генератор и схема начального сброса
- •3.2 Кнопки и датчики
- •3.3 Подключение светодиодных индикаторов
- •3.4 Подключение жидкокристаллических индикаторов
- •3.5 Комбинированное использование портов
- •3.6 Подключение реле и электромагнитных исполнительных устройств
- •3.7 Подключение мк к компьютеру через последовательный порт
- •3.8 Подключение интегрального датчика температуры с интерфейсом 1- Wire
- •4 Микроконтроллеры с архитектурой mcs-51
- •4.1 Особенности архитектуры mcs-51
- •4.2 Структура микроконтроллеров mcs-51
- •4.2.1 Внутренняя структура mcs-51
- •Структура микроконтроллера mcs-51
- •4.2.2 Организация памяти и программно доступные ресурсы
- •Организация памяти в микроконтроллерах семейства 8051
- •4.2.3 Система команд и методы адресации
- •4.3 Современные мк с архитектурой mcs-51
- •5 Микроконтроллеры с risc- архитектурой
- •5.2 Однокристальные risc- контроллеры avr
- •5.2.1 Способы адресации в микроконтроллерах avr
- •5.3 Микроконтроллеры семейства msp430
- •5.3.1 Архитектура
- •5.3.2 Система тактирования
- •5.3.3 Встроенная эмуляция
- •5.3.4 Адресное пространство
- •5.4 Сравнение микроконтроллеров различных семейств
- •6 Разработка систем на бис программируемых цифровых устройств
- •6.1 Основы проектирования систем на микроконтроллерах и плис
- •6.2 Технология разработки микропроцессорных контроллеров
- •6.2.1 Основные этапы цикла разработки микропроцессорного контроллера
- •Литература
2.5.2 Последовательный периферийный интерфейс spi
Последовательный периферийный интерфейс SPI (Serial Peripheral Interface) предназначен для связи МК с периферийными устройствами МП- системы, основой которой он является. Часто эти устройства расположены на одной плате с МК, реже – это вынесенные пульты управления, индикаторные панели и т.п. В качестве периферийных устройств могут использоваться сложные периферийные ИС со встроенными контроллерами управления, такие, как ЦАП, АЦП с цифровой фильтрацией, последовательные запоминающие устройства типа FLASH или EEPROM, энергонезависимые ОЗУ и т.д. Рынок периферийных компонентов с интерфейсом, поддерживающим один из протоколов обмена SPI, очень широк.
Рис. Структурная схема сопряжения МК и двух периферийных устройств.
В рассматриваемом примере МК является ведущим устройством, он инициирует обмен при передаче информации между МК и одной из периферийных ИС. Каждая из периферийных ИС является ведомым устройством. SPI-шина представлена тремя общими линиями связи (MISO, MOSI, SCK) и двумя линиями выбора ведомого устройства (SS1, SS2), которые индивидуальны для каждой периферийной ИС:
MOSI – линия передачи данных от ведущего к ведомому (Master Output Slave Input).
MISO – линия передачи данных от ведомого к ведущему (Master Input Slave Output).
SCK – линия сигнала стробирования данных.
SS1 и SS2 – линии сигналов выбора ведомого устройства.
Из структурной схемы видно, что минисеть на основе интерфейса SPI относится к классу магистрально - радиальных. Линии передачи данных и линия синхронизации являются примером магистральной организации, а линии выбора ведомого устройства – элементом системы радиального типа. Перед началом обмена ведущее устройство отмечает одно ведомое устройство, с которым будет производиться обмен. Для этого на линии выбора устройства SSi устанавливается низкий активный уровень сигнала. Затем ведущее устройство последовательно выставляет на линию MOSI восемь бит информации, сопровождая каждый бит сигналом синхронизации SCK. Ведомое устройство дешифрирует переданный байт информации и определяет, в каком направлении будет производиться дальнейший обмен. Если ведомое устройство должно принимать информацию, то ведущее устройство, не снимая сигнала выбора ведомого SSi, продолжит передачу по линии MOSI. Если ведомое устройство должно передавать информацию, то оно активизирует линию MISO и в ответ на каждый импульс синхронизации от ведущего будет выставлять один бит информации. Длина посылки обмена в общем случае не ограничена и может составлять даже не целое число байтов. Завершение обмена также инициируется ведущим МК установкой в неактивное состояние сигнала выбора ведомого SSi.
Рис. – Схема связи двух МК по интерфейсу SPI
Т.к. интерфейс образован однонаправленными линиями, то очень просто организовать гальваническую развязку для каждого устройства системы при использовании оптронов.
Скорость обмена устанавливается программно. Максимальная скорость обмена в ведущем режиме не может превышать Fтакт/2, в ведомом – Fтакт.