
- •§ 1.4 Закони динаміки. Поняття маси, сили, імпульсу, імпульсу сили. Інерціальні системи відліку
- •§ 1.5. Імпульс системи. Закон збереження імпульсу
- •§ 1.6. Центр мас (інерції) системи. Закон руху центра мас
- •§ 1.7. Межі застосування класичного опису частинок
- •§ 1.8. Основний закон динаміки поступального руху твердого тіла
- •§ 1.9. Динаміка обертального руху твердого тіла відносно осі. Поняття моменту інерції, моменту сили та моменту імпульсу твердого тіла
- •§ 1.10. Закон збереження моменту імпульсу твердого тіла відносно осі
- •§ 1.11. Поняття енергії і роботи. Робота сили. Потужність
- •§ 1.12. Кінетична енергія. Теорема про зміну кінетичної енергії
- •13. Внутрішня енергія ідеального газу. Теплоємності ідеального газу.
- •13.1. Середня кінетична енергія молекул. Внутрішня енергія ідеального газу
- •13.2. Теплоємність газів. Недоліки класичної теорії теплоємностей
- •14. Адіабатний процес та його рівняння. Робота в адіабатному процесі.
- •14.1. Адіабатичний процес. Рівняння Пуасона
- •15. Схема теплової машини та її ккд. Цикл Карно. Елементарне кількісне формування другого закону термодинаміки.
- •15.1. Цикл Карно. Максимальний ккд теплової машини
- •15.2. Друге начало термодинаміки. Нерівність Клаузіуса
- •16. Закон Кулона для взаємодії точкових електричних зарядів. Напруженість електричного поля. Принцип супер позиції.
- •17. Робота сил електричного поля. Теорема про циркуляцію вектора напруженості електричного поля. Потенціал
- •18. Конденсатори. Електроємність конденсатора. З’єднання конденсаторів
- •20. Закон Ома для неоднорідної ділянки кола і для повного кола
- •21. Магнітне поле і його характеристики. Дія магнітного поля на контур зі струмом. Принцип суперпозиції. Класифікація магнетиків
- •22. Дія магнітного поля на струм; сила Ампера. Магнітна взаємодія струмів
- •24.Гармонічні коливання. Диференціальне рівняння гармонічних коливань та його розв’язок. Амплітуда, фаза, частота, період коливань
- •5.4. Енергія гармонічних коливань
- •29. Інтерференція світла
- •Застосування
- •30. Дифракція Френеля
- •Принцип Гюйненса-Френеля
- •Метод зон френеля
- •31. Дифракція Фраунгофера на щиліни та решітці
- •32. Природне та поляризоване світло
- •Закон Малюса
- •Закон Брюстера
- •33. Теплове випромінювання. Закони випромінювання абсолютно чорного тіла та їх пояснення. Гіпотеза Планка.
- •38. Будова ядра. Дефект маси та енергія зв’язку ядра. Ядерні сили.
- •Дефект маси та енергія зв’язку ядра. Ядерні сили
- •39. Радіоактивність. Закон радіоактивного розпаду.
14. Адіабатний процес та його рівняння. Робота в адіабатному процесі.
14.1. Адіабатичний процес. Рівняння Пуасона
Адіабатичним
(або адіабатним) називається процес, що
протікає без теплообміну з навколишнім
середовищем. Умова такого процесу:
(або Q=0). Застосовуючи до адіабатичного
процесу 1-й принцип термодинаміки (2.29),
маємо
,
(2.39)
тобто при адіабатичному розширенні газ виконує роботу за рахунок запасу його внутрішньої енергії. При цьому ідеальний газ охолоджується. Дійсно, взявши до уваги вираз для внутрішньої енергії (2.37), маємо
. (2.40)
Звідси
бачимо, що при розширенні газу (A>0)
приріст температури
,
в чому і треба було переконатися. Описане
явище – спосіб отримання низьких
температур.
Вираз (2.40) дозволяє розрахувати роботу ідеального газу при адіабатичному процесі. Якщо використати рівняння Менделєєва-Клапейрона, то цю роботу можна виразити через параметри p та V.
Щоб здійснити адіабатичний процес, треба надійно теплоізолювати систему або здійснювати його дуже швидко, щоб теплообмін практично не встигав відбутися. Другий з цих варіантів зустрічається у природі. Наприклад, величезні маси атмосферного повітря, нагріваючись біля поверхні Землі, піднімаються вгору, потрапляють в області нижчих тисків і розширюються. Цей процес адіабатичний, бо через погану теплопровідність повітря теплообміном при цьому можна знехтувати. Виконуючи роботу розширення проти зовнішнього тиску, повітря охолоджується, а водяна пара перетворюється в насичену й конденсується (хмари).
Згущення і розрідження, що утворюються у звуковій хвилі в газах, – це також по суті процеси адіабатичного стиснення і розширення газу. Оскільки швидкість поширення звуку немала (340м/с при кімнатних температурах), процеси тут відбуваються так швидко, що за цей короткий час теплообміном можна знехтувати.
Приступимо тепер до виведення рівняння адіабати. За основу беремо вираз 1-го принципу термодинаміки для цього процесу (в диференціальній формі (2.30)):
.
(2.41)
Розпишемо ліву частину цього рівняння. Елементарну роботу розрахуємо на основі формули (2.25), причому тиск підставимо, взявши його з рівняння Менделєєва-Клапейрона (2.3):
.
Елементарний приріст внутрішньої енергії dU запишемо, продиференціювавши вираз (2.37):
.
Тепер замість (2.41) маємо
.
Поділимо
далі останнє рівняння на добуток
і одержимо
.
(2.42)
Коефіцієнт
запишемо, виразивши газову сталу через
різницю
з рівняння Майєра (2.38):
,
де введено позначення
.
(2.43)
Тепер співвідношення (2.42) приймає вигляд
.
Оскільки
,
то наше рівняння запишеться у формі
або
.
Звідси випливає, що
Або
.
(2.44)
С
Рис. 2.9
піввідношення (2.44) є рівнянням адіабати або рівнянням Пуасона. Параметр



Визначаючи абсолютну температуру з рівняння Менделєєва-Клапейрона і підставляючи одержаний вираз у співвідношення (2.44), одержимо іншу форму запису рівняння Пуасона:
.
(2.45)
Згадаємо,
що рівняння ізотерми
.
Порівняння двох останніх виразів
приводить до висновку, що адіабата
графічно “крутіша” від ізотерми (див.
рис.2.9).
Якщо з рівняння Менделєєва-Клапейрона або з рівняння (2.45) визначити об’єм V і підставити одержаний вираз у (2.44), то матимемо третю форму запису рівняння Пуасона
.
(2.46)
Зауваження: 1) рівняння Пуасона (2.44–46) правильні за умови, що кількість газу (чи його маса) незмінні під час процесу; 2) величини “const” у всіх виписаних рівняннях різні.
………………………………………………………………………………………………………………..