
- •Раздел 2. Дискретное строение вещества
- •Тема 2.1 Атомно-молекулярные представления о строении вещества.
- •Тема 2.2 Строение атома и атомного ядра.
- •История атомистических учений.
- •Наблюдения и опыты, подтверждающие атомно-молекулярное строение вещества. Объяснение свойств агрегатных состояний вещества на основе атомно-молекулярных представлений.
- •Фазовые переходы. Использование физических свойств веществ в технике, для записи, хранения и воспроизведения информации. Жидкие кристаллы.
- •Применение жидких кристаллов
- •Окно становится экраном!
- •Будущее 3d видео - за жидкими кристаллами!
- •Солнцезащитные очки Uvex на жидких кристаллах
- •Строение атома.
- •Состав ядра.
- •Изотопы.
- •Электрон, протон, нейтрон, кварки и другие элементарные частицы.
- •Энергия связи. Связь массы и энергии.
- •7. Ядерная энергетика
- •Радиоактивные излучения и их воздействие на организм человека.
- •Виды радиоактивности
- •Альфа распад.
- •Бета-распад
- •Гамма-распад (изомерный переход)
- •К чему может привести воздействие радиации на человека?
- •Как радиация может попасть в организм?
- •Cуммарное облучение
Радиоактивные излучения и их воздействие на организм человека.
Радиоактивность открыта в 1896 г. А. Беккерелем, который обнаружил проникающее излучение солей урана, действующее на фотоэмульсию. Беккерель установил, что интенсивность излучения определяется только количеством урана в препарате и совершенно не зависит от того, в какие соединения он входит. То есть это свойство присуще не соединениям, а химическому элементу — урану.
В 1898 г. Мария Кюри и Пьер Кюри обнаружили радиоактивность тория, позднее ими были открыты радиоактивные элементы полоний и радий.
Радиоакти́вность (от лат. radio — «излучаю», radius — «луч» и activus — «действенный»), радиоакти́вный распа́д — явление спонтанного превращения атомного ядра в другое ядро или ядра.
Радиоактивный распад сопровождается испусканием одной или нескольких частиц (например, электронов, нейтрино, альфа-частиц, фотонов). Радиоактивностью называют также свойство вещества, содержащего радиоактивные ядра.
Установлено, что радиоактивны все химические элементы с порядковым номером, большим 82 (то есть, начиная с висмута), и многие более лёгкие элементы (прометий и технеций не имеют стабильных изотопов, а у некоторых элементов, таких как индий, калий или кальций, часть природных изотопов стабильны, другие же радиоактивны).
Естественная радиоактивность — самопроизвольный распад ядер элементов, встречающихся в природе.
Искусственная радиоактивность — самопроизвольный распад ядер элементов, полученных искусственным путем через соответствующие ядерные реакции.
Число радиоактивных ядер одного типа постоянно уменьшается во времени благодаря их распаду. Скорость распада принято характеризовать периодом полураспада: это время, за которое число радиоактивных ядер определенного типа уменьшится в 2 раза. Для радионуклида с периодом полураспада 1 час это означает, что через 1 час его количество станет меньше первоначального в 2 раза, через 2 часа - в 4, через 3 часа - в 8 раз и т.д., но полностью не исчезнет никогда. В такой же пропорции будет уменьшается и радиация, излучаемая этим веществом. Поэтому можно прогнозировать радиационную обстановку на будущее, если знать, какие и в каком количестве радиоактивные вещества создают радиацию в данном месте в данный момент времени.
Виды радиоактивности
Альфа распад.
α-распадом называют самопроизвольный распад атомного ядра на дочернее ядро и α-частицу (ядро атома 4He).
α-распад, как правило, происходит в тяжёлых ядрах с массовым числом А≥140 (хотя есть несколько исключений).
Пример:
.
В результате α-распада элемент смещается на 2 клетки к началу таблицы Менделеева, массовое число дочернего ядра уменьшается на 4.
Бета-распад
Беккерель доказал, что β-лучи являются потоком электронов.
β-распад (точнее, бета-минус-распад, β − -распад) — это радиоактивный распад, сопровождающийся испусканием из ядра электрона и антинейтрино.
При этом происходит превращение нейтрона в протон с испусканием электрона и антинейтрино:
Пример:
После β − -распада элемент смещается на 1 клетку к концу таблицы Менделеева (заряд ядра увеличивается на единицу), тогда как массовое число ядра при этом не меняется.