
- •Предисловие
- •1. Основные положения технической гидромеханики
- •1.1. Основные понятия и определения
- •1.2. Жидкость и ее некоторые физико-механические характеристики
- •Требования к рабочим жидкостям гидроприводов
- •Старение жидкостей в процессе эксплуатации
- •2. Основы гидростатики
- •2.1. Силы, действующие в жидкости. Гидростатическое давление
- •2.2. Основное уравнение гидростатики
- •2.3. Равновесие тяжелой несжимаемой жидкости
- •2.4. Равновесие жидкости при наличии негравитационных массовых сил
- •Задание 2.
- •2.5. Приборы для измерения давления
- •2.6. Домкрат и гидравлический мультипликатор
- •Задача.
- •Гидравлический пресс
- •2.9. Равновесие и остойчивость тел, погруженных в жидкость
- •2.9.1. Закон Архимеда
- •2.9.2. Равновесие тел погруженных в жидкость
- •2.10. Давление жидкости на плоские стенки
- •2.11. Давление жидкости на цилиндрические поверхности
- •2.12. Внутреннее гидростатическое давление в трубах
- •Механика течения жидкости
- •3.1. Расход жидкости
- •3.2. Основные понятия струйчатого движения
- •3.3. Закон неразрывности потока
- •3.4. Уравнения движения идеальной жидкости
- •3.5. Энергия элементарной струйки
- •3.6. Энергия потока жидкости
- •3.7. Уравнение Бернулли
- •3.8. Графическое представление и практическое применение уравнения Бернулли
- •3 .9. Виды потоков жидкости
- •3.10. Потери давления
- •3.11. Гидравлический удар
- •3.12. Кавитация
Механика течения жидкости
Раздел технической гидромеханики, изучающий законы движения жидкости, называется гидродинамикой.
3.1. Расход жидкости
Потоки жидкости в общем случае являются трехмерными или объемными. Более простыми являются двухмерные и одномерные осевые. В технической гидромеханике рассматриваются одномерные потоки.
Объем жидкости V, проходящей через живое сечение трубопровода в единицу времени t, называют расходом
Q= V/t.
Расход – один из основных параметров технической гидромеханики и гидропривода. Единицей измерения его - м3 /с. Часто в гидроприводе применяют – л/мин.
Средняя скорость движения потока через сечение S
v=Q/S.
3.2. Основные понятия струйчатого движения
Т
раекторией
жидкой частицы называют кривую линию,
которую описывает жидкая частица
при движении. При этом жидкой
частицей называют
такой малый объем жидкости, для которого
можно пренебречь изменением его формы.
При решении практических задач предполагают, что поток движущейся жидкости состоит из элементарных струек, не меняющих своей формы, т. е. поток мысленно разбивают на ряд элементарных струек (трубок), как это показано на рис. 3.1. Модель, согласно такому предположению, называют струйчатой моделью движения жидкости.
Рассмотрим поток жидкости, находящейся в установившемся Движении (рис. 3.2). В точках 1, 2, 3, ... этого потока, взятых на расстоянии l друг от друга, проведем векторы U1, U2, U3 ..., показывающие величину и направление скоростей движения частиц жидкости в данный момент времени. Касательная кривая, проведенная к векторам движения частиц жидкости и характеризующая направление движения ряда последовательно расположенных частиц в жидкости в данный момент времени, называется линией тока. В отличие от траектории, которая показывает путь движения одной частицы жидкости за определенный промежуток времени t, линия тока соединяет разные частицы и дает некоторую мгновенную характеристику движущейся жидкости за время t.
Если в движущейся жидкости выделить бесконечно малый замкнутый контур и через все его точки провести линии тока, соответствующие данному моменту времени, то получится как бы трубчатая непроницаемая поверхность, называемая трубкой тока. Масса жидкости, движущейся внутри трубки тока, образует элементарную струйку.
Элементарная струйка обладает двумя свойствами:
1 ) скорости и площади поперечных сечений струек в одном живом сечении не меняются вследствие их малости;
2) скорости и площади поперечных сечений струек в различных живых сечениях могут меняться, однако произведение скорости v отдельных частиц струйки на площади их поперечного сечения S остаются постоянными (уравнение неразрывности элементарной струйки).
Таким образом, поток жидкости есть совокупность элементарных струек, представляющая собой непрерывную массу частиц, движущихся в каком-либо направлении.
3.3. Закон неразрывности потока
Основное уравнение кинематики жидкости – уравнение неразрывности, которое вытекает из условия несжимаемости жидкости и сплошности движения.
Рассмотрим установившееся движение в русле переменного сечения (рис. 3.3). Выберем два произвольных сечения /—/ и //—//, нормальных к оси потока, и рассмотрим участок потока, заключенный между сечениями.
При течении жидкости по трубопроводу переменного сечения без разрывов сплошности масса жидкости, проходящей через любое поперечное сечение канала, должна быть постоянной, т.е.
11v1= 2S2v2=iivi=const
где v1, v2 — скорости жидкости в сечениях 1 и 2; 1, 2 - площади двух поперечных сечений трубопровода; 1, 2 - плотности жидкости.
Если
пренебречь сжимаемостью жидкости, то
ее плотность в любом сечении будет
одинакова и
v11= 2v2= ivi=const,
что выражает закон неразрывности потока.