- •Общие указания
- •Глава 1
- •1.1. Органические топлива
- •1.1.1. Состав топлив
- •1.1.2. Характеристики топлив
- •1.1.3. Разновидности горения
- •1.1.4. Основные стадии гетерогенного горения
- •1.1.5. Фазы горения
- •1.1.6. Скорость горения
- •1.2. Расчет процессов горения
- •1.2.1. Определение потребного количества окислителя для полного сжигания 1кг горючего
- •1.2.2. Определение массы воздуха для сжигания 1кг топлива
- •1.2.3. Коэффициент избытка воздуха
- •1.2.4. Определение количества и состава продуктов сгорания
- •1.2.5. Определение состава продуктов сгорания
- •1.2.6. Определение температуры конца сгорания
- •1.2.7. Упрощенная форма уравнения теплового баланса
- •Глава 2
- •2.1. Основные понятия и определения термодинамики
- •2.2. Параметры состояния системы
- •2.3. Первый закон термодинамики
- •2.4. Свойства рv – и Тs – диаграмм
- •2.5. Термодинамические процессы идеальных газов
- •2.5.1. Политропный процесс
- •Вывод уравнения политропного процесса
- •Соотношения между параметрами состояния в политропном процессе
- •Определение изменения внутренней энергии
- •Определение изменения энтальпии
- •Определение изменения энтропии
- •Определение теплоты, подводимой (отводимой) в ходе политропного процесса
- •Определение работы расширения в ходе политропного процесса
- •2.5.2. Частные случаи политропного процесса
- •2.5.3. Изохорный процесс
- •2.5.4. Изобарный процесс
- •2.5.5. Изотермический процесс
- •2.5.6. Адиабатный процесс
- •2.5.7. Графическое изображение процессов
- •2.6. Термодинамические циклы
- •Глава 3
- •3. Реальные газы
- •3.1. Отличия реальных газов от идеальных
- •3.2. Устройство pv – диаграммы реального газа
- •3.3. Области pv- диаграммы
- •3.4. Таблицы водяного пара
- •3.5. Определение параметров влажного насыщенного пара
- •3.6. Диаграммы водяного пара
- •3.7. Расчет процессов изменения состояния реального газа (водяного пара)
- •Изохорный процесс ( )
- •Изобарный процесс ( )
- •Изотермический процесс ( )
- •3.9. Паросиловые установки
- •Глава 4 конвективный теплообмен
- •4.1. Математическая формулировка задачи конвективного теплообмена
- •4.2. Краевые условия при решении задач конвективного теплообмена (условия однозначности)
- •4.3. Решение задач конвективного теплообмена на основе теории подобия
- •4.4. Приведение системы дифференциальных уравнений к безразмерному виду
- •4.5. Теоремы подобия
- •4.6. Физический смысл критериев гидромеханического и теплового подобия
- •4.7. Критериальные уравнения конвективного теплообмена
- •4.8. Методика решения задач конвективного теплообмена на основе теории подобия
- •4.9. Выбор определяющих размеров и величин
- •Семестровая работа №1 топливо, газовые смеси и теплоемкость
- •Указания к выполнению семестровой работы
- •Методика расчета семестровой работы
- •Исходные данные
- •Контрольные вопросы
- •Основная литература
- •Дополнительная литература
- •Семестровая работа №2 термодинамические процессы и циклы с газообразным рабочим телом
- •Указания к выполнению семестровой работы
- •Методика расчета семестровой работы
- •I. Расчет термодинамических процессов, составляющих цикл
- •II. Расчет прямого цикла 1-2-3-4-5-1
- •Контрольные вопросы
- •Основная литература
- •Дополнительная литература
- •Семестровая работа №3 термодинамические процессы водяного пара
- •Указания к выполнению семестровой работы
- •Исходные данные
- •Методика расчета семестровой работы
- •1. Расчет адиабатного процесса 1-2
- •2. Расчет изобарного процесса 2-3
- •3. Расчет процесса 3-4
- •4. Расчет изобарного процесса 4-5
- •5. Расчет изобарного процесса 5-6
- •6. Расчет изобарного процесса 6-1
- •7. Расчет цикла
- •Контрольные вопросы
- •Основная литература
- •Семестровая работа №4 конвективный теплообмен и интенсификация теплопередачи
- •Указания к выполнению семестровой работы
- •Методика расчета семестровой работы № 4
- •1. Определяем коэффициент теплоотдачи
- •2. Определяем коэффициент теплоотдачи
- •3.Определяем термические сопротивления
- •4. Определяем коэффициент теплопередачи
- •5. Вычисляем плотность теплового потока
- •Контрольные вопросы
- •Основная литература
- •Дополнительная литература
- •Приложения
- •Свойства горючих
- •Формулы средних (в интервале 0...Т, к) изохорных массовых
- •Термодинамические свойства пара и воды в состоянии насыщения (по давлению)
- •Термодинамические свойства пара и воды в состоянии насыщения (по давлению)
- •Физические параметры воды на линии насыщения при давлении 101325 Па (760 мм.Рт.Ст.)
- •Физические параметры сухого воздуха при давлении
- •Оглавление
Глава 4 конвективный теплообмен
Теплообмен является сложным процессом, который для простоты изучения условно разделяют на три элементарных способа передачи энергии: теплопроводность, конвективный теплообмен и тепловое излучение.
Конвекцией называется явление переноса тепла путем перемещения и перемешивания между собой частиц жидкости или газа. Различают конвекцию свободную и вынужденную. В случае свободной конвекции перемещение теплоносителя происходит под влиянием разности плотностей холодной и горячей жидкости или газа: подогревшиеся объемы всплывают, а охладившиеся - опускаются. При вынужденной конвекции теплоноситель перемещается в пространстве с помощью насосов, вентиляторов и других устройств. Теплообмен при вынужденной конвекции протекает более интенсивно. Будучи связан с движением среды, он в значительной степени определяется законами гидромеханики.
В реальных условиях элементарные способы теплообмена в чистом виде встречаются очень редко. В большинстве случаев эти процессы протекают одновременно и влияют друг на друга. Конвекция, например, всегда сопровождается теплопроводностью (это обусловлено тем, что при движении жидкости или газа неизбежно соприкосновение отдельных частиц, имеющих разную температуру) и часто лучеиспусканием.
Установлены следующие понятия теплообмена:
теплоотдача - процесс теплообмена между поверхностью тела (стенкой) и обтекающей эту поверхность жидкой или газообразной средой;
теплопроводность - процесс переноса тепла через твердую стенку;
теплопередача - процесс теплообмена между двумя средами, разделенными твердой стенкой, совокупным действием указанных выше элементарных способов переноса энергии.
В инженерной практике основной интерес представляет конвективный теплообмен между потоком жидкости или газа и поверхностью твердого тела, который носит название теплоотдачи.
Конвективный теплообмен определяется в значительной степени режимом течения жидкости или газа. Режим течения может быть ламинарным или турбулентным. В случае ламинарного режима среда движется, образуя несмешивающиеся струйки, повторяющие очертания поверхности. Передача тепла от жидкости к стенке осуществляется при этом теплопроводностью. При турбулентном режиме, обусловленном источниками возмущений или большими скоростями, на основное перемещение налагаются различные неупорядоченные пульсационные и вихревые движения, в результате чего возникает интенсивное перемешивание частиц жидкости в потоке. Согласно теории Прандтля, для такого движения жидкости или газа характерно образование непосредственно у поверхности стенки тонкого слоя, движущегося ламинарно и называемого пограничным слоем (вязким подслоем). Толщина его зависит от физических свойств среды и скорости потока жидкости. Вне этого слоя среда движется турбулентно.
В турбулентной части, благодаря интенсивному перемешиванию частиц среды, изменение температуры в направлении нормали n к поверхности весьма незначительно. В пределах же пограничного слоя перенос тепла в направлении нормали возможен только путем теплопроводности (нет перемещения частиц в этом направлении). Вследствие малых значений коэффициента теплопроводности жидкостей и газов пограничный слой при теплообмене составляет основное термическое сопротивление, вызывающее резкое изменение температуры от до . Очевидно, интенсивность конвективного теплообмена будет тем выше, чем меньше толщина пограничного слоя. Так, например, увеличение скорости движения потока жидкости и снижение ее вязкости уменьшает толщину пограничного слоя и увеличивает интенсивность теплоотдачи. Все это говорит о сложной зависимости процесса теплоотдачи от многих факторов.
Для расчета теплового потока от жидкости к поверхности твердого тела (или наоборот), была предложена формула, обычно называемая уравнением
Ньютона – Рихмана , (4.1)
где F - площадь поверхности передачи тепла;
, - соответственно температура жидкости и стенки.
Из уравнения (4.1) следует, что , .
Таким образом, - это количество тепла, передаваемое в единицу времени через единицу площади поверхности при разности температур между жидкостью и стенкой в один градус.
Расчет теплоотдачи, несмотря на простоту уравнения (4.1), является весьма сложным делом, главная трудность которого сводится к нахождению коэффициента теплоотдачи .
В общем случае его можно представить как функцию формы Ф и размеров , тела, температуры поверхности нагрева , скорости W и температуры жидкости, ее физических характеристик: коэффициента теплопроводности ; коэффициента температуропроводности а; теплоемкости Сp; плотности ; коэффициента кинематической вязкости и других величин, т.е.
. (4.2)