
- •Содержание
- •Глава 1. Основы механики
- •§ 1.1. Механика и ее структура
- •§ 1.2. Модели и основные понятия
- •§ 1.3. Скорость
- •§ 1.4. Ускорение и его составляющие
- •§ 1.5. Виды механического движения
- •Классификация движения в зависимости от тангенциальной и нормальной составляющих ускорения
- •§ 1.6. Свободное падение
- •§ 1.7. Движение тела, брошенного вертикально вверх
- •1. Движение вертикально вверх с начальной скоростью υ0
- •§ 1.8. Движение тела, брошенного горизонтально
- •§ 1.9. Движение тела, брошенного под углом к горизонту
- •§ 1.10. Равномерное движение точки по окружности
- •Глава 2. Основы ДинамикИ
- •§ 2.1. Первый закон Ньютона. Масса. Сила
- •§ 2.2. Второй и третий законы Ньютона.
- •§ 2.3. Преобразования Галилея.
- •§ 2.4. Закон сохранения импульса.
- •§ 2.5. Силы в механике. Силы трения
- •§ 2.6. Сила тяготения
- •§ 2.7. Энергия. Работа. Мощность
- •§ 2.8. Кинетическая энергия
- •§ 2.9. Потенциальная энергия
- •§ 2.10. Работа силы тяжести.
- •§ 2.11. Работа силы упругости. .
- •Глава 3. Механика жидкостей
- •§ 3.1. Давление в жидкости и газе
- •§ 3.2. Уравнение неразрывности
- •§ 3.3. Уравнение Бернулли
- •Полным давлением
- •Глава 4. Основы специальной теории относительности
- •§ 4.1. Постулаты специальной теории относительности
- •§ 4.2. Релятивистская кинематика
- •§ 4.3. Релятивистская динамика
- •Глава 5. Молекулярная физика
- •§ 5.1. Статистический и термодинамический методы
- •§ 5.2. Молекулярно-кинетическая теория.
- •§ 5.3. Уравнение состояния идеального газа
- •§ 5.4. Графическое представление изопроцессов
- •§ 5.5. Основное уравнение молекулярно -
- •§ 5.6. Распределение молекул идеального газа по
- •§ 5.8. Упругие свойства твердых тел
- •Глава 6. Основы Термодинамика
- •§ 6.1. Внутренняя энергия идеального газа.
- •§ 6.2. Первое начало термодинамики
- •§ 3.3. Работа газа при изменении его объема
- •§ 6.4. Круговой процесс (цикл).
- •§ 6.5. Теплоемкость удельная и молярная
- •§ 6.6. Применение первого начала термодинамики к
- •§ 6.7. Уравнение теплового баланса
- •§ 6.8. Второе начало термодинамики
- •§ 6.9. Тепловые двигатели и холодильные машины
- •§ 6.10. Цикл Карно
- •Глава 7. Основы электродинамика
- •§ 7.1. Электрический заряд и закон его сохранения
- •§ 7.2. Закон Кулона. Электростатическое поле и его
- •§ 7.3. Принцип суперпозиции. Графическое
- •§ 7.4. Работа сил электростатического поля.
- •§ 7.5. Разность потенциалов. Эквипотенциальные
- •§ 7.6. Проводники в электростатическом поле
- •7.7. Диэлектрики в электростатическом поле
- •§ 7.8. Электроемкость. Конденсаторы
- •§ 7.8. Энергия электростатического поля
- •§ 7.10. Постоянный электрический ток
- •§ 7.11. Сторонние силы. Электродвижущая сила и
- •§ 7.12. Закон Ома. Сопротивление проводников
- •§ 7.14. Работа и мощность тока. Закон Джоуля-Ленца
- •§ 7.15. Магнитное поле и его характеристики
- •§ 7.16. Закон Ампера. Взаимодействие параллельных
- •§ 7.17. Принцип суперпозиции магнитных полей.
- •§ 7.18. Сила Лоренца. Движение заряженных частиц в
- •§ 7.19. Магнитные свойства вещества
- •§ 7.20. Явление и закон электромагнитной индукции
- •§ 7.21. Правило Ленца. Эдс индукции в неподвижных и
- •§ 7.22. Индуктивность контура. Самоиндукция
- •§ 7.23. Взаимная индукция. Трансформаторы.
- •Глава 8. Колебания и волны
- •§ 8.1. Гармонические колебания и их характеристики
- •§ 8.2. Механические гармонические колебания
- •§ 8.3. Пружинный и математический маятники
- •§ 8.4. Свободные гармонические колебания в
- •§ 8.5. Вынужденные механические и электромагнитные
- •§ 8.6. Переменный электрический ток
- •§ 8.7. Резонанс в цепи переменного тока.
- •§ 8.8. Упругие и электромагнитные волны
- •§ 8.9. Электромагнитные волны
- •§ 8.10. Шкала электромагнитных волн.
- •Глава 9. Основы оптика
- •§ 9.1. Корпускулярная и волновая теории света
- •§ 9.2. Основные законы оптики
- •§ 9.3. Полное отражение
- •§ 9.4. Линзы и их основные характеристики
- •§ 9.5. Дисперсия света
- •§ 9.6 Интерференция
- •§ 9.7 Дифракция
- •§ 9.8. Поляризация света
- •§ 9.9. Излучение и спектры
- •Глава 10. Квантовая природа излучения
- •§ 10.1. Фотоэффект
- •§ 10.2 Давление света
- •Глава 11. Основы физики атома
- •§ 11.1. Линейчатый спектр атома водорода
- •§ 11.2. Физика атомного ядра
- •§ 11.3.Энергия связи ядра. Дефект массы ядра
- •§ 11.4. Ядерные силы. Модели ядра
- •§ 11.5. Радиоактивность
- •§ 11.6. Правила смещения. Закон радиоактивного
- •§ 11.7. Ядерные реакции
- •§ 11.8. Элементарные частицы
- •§ 11.9. Типы взаимодействий элементарных частиц
- •§ 11.10. Кварки
- •Приложения
- •Физические постоянные
- •3. Приставки системы си
- •4. Некоторые сведения векторной алгебры
§ 5.8. Упругие свойства твердых тел
Деформация – изменение формы и размеров твердых тел под действием внешних сил. При деформации происходит изменение взаимного положения частиц тела, связанное с их перемещением относительно друг друга. Деформация представляет собой результат изменения межатомных расстояний и перегруппировки блоков атомов. Обычно деформация сопровождается изменением величин межатомных сил, мерой которого является упругое механическое напряжение.
Упругая деформация – деформация, при которой после прекращения действия внешних сил тело принимает первоначальные размеры и форму.
Пластическая деформация – деформация, которая сохраняется в теле после прекращения действия внешних сил. Все виды деформаций (растяжение или сжатие, сдвиг, изгиб, кручение) могут быть сведены к одновременно происходящим деформациям растяжения или сжатия и сдвига.
Относительная деформация ε – количественная мера, характеризующая степень деформации и определяемая отношением абсолютной деформации ∆х к величине смещения х (характеризует первоначальные размеры и форму тела).
Относительное продольное растяжение (сжатие):
где ∆l – изменение длины тела при растяжении (сжатии), l – длина тела до деформации.
Относительное поперечное растяжение (сжатие):
где ∆d – изменение диаметра стержня при растяжении (сжатии); d – диаметр стержня.
Сила упругости Fупр – сила, возникающая при деформации тела и направленная противоположно направлению смещения частиц при деформации.
Напряжение σ – физическая величина, определяемая силой упругости, действующей на единицу площади поперечного сечения тела:
Напряжение называется нормальным, если сила направлена по нормали к поверхности, и тангенциальным, если сила направлена по касательной к поверхности.
Закон Гука. Напряжение прямо пропорционально относительной деформации:
где E – модуль Юнга (определяется напряжением, вызывающим относительное удлинение, равное единице). Закон Гука выполняется только для упругих деформаций. Из приведенных формул вытекает, что
или
Это выражение также задает закон Гука, согласно которому абсолютное удлинение тела при упругой деформации пропорционально действующей на тело силе (k – коэффициент упругости).
E
F
D
B
C
A
σу
σр
σт
σп
E
F
D
B
C
A
σу
σр
σт
σп
Рис. 5.12
При дальнейшем увеличении напряжения деформация еще упругая (хотя зависимость σ(ε) уже не линейна) и до предела упругости (σу) остаточные деформации не возникают. За пределом упругости в теле возникают остаточные деформации и график, описывающий возвращение тела в первоначальное состояние после прекращения действия силы, изобразится не кривой BO, а параллельной – CF. Напряжение, при котором появляется заметная остаточная деформация (≈0,2%), называется пределом текучести (σт ) – точка C на кривой. В области CD деформация возрастает без увеличения напряжения, т.е. тело как бы «течет». Эта область называется областью текучести (или областью пластической деформации). Материалы, для которых область текучести значительна, называются вязкими, для которых же она практически отсутствует – хрупкими. При дальнейшем растяжении (за точку D) происходит разрушение тела. Максимальное напряжение, возникающее в теле до разрушения, называется пределом прочности (σр).