
- •Содержание
- •Глава 1. Основы механики
- •§ 1.1. Механика и ее структура
- •§ 1.2. Модели и основные понятия
- •§ 1.3. Скорость
- •§ 1.4. Ускорение и его составляющие
- •§ 1.5. Виды механического движения
- •Классификация движения в зависимости от тангенциальной и нормальной составляющих ускорения
- •§ 1.6. Свободное падение
- •§ 1.7. Движение тела, брошенного вертикально вверх
- •1. Движение вертикально вверх с начальной скоростью υ0
- •§ 1.8. Движение тела, брошенного горизонтально
- •§ 1.9. Движение тела, брошенного под углом к горизонту
- •§ 1.10. Равномерное движение точки по окружности
- •Глава 2. Основы ДинамикИ
- •§ 2.1. Первый закон Ньютона. Масса. Сила
- •§ 2.2. Второй и третий законы Ньютона.
- •§ 2.3. Преобразования Галилея.
- •§ 2.4. Закон сохранения импульса.
- •§ 2.5. Силы в механике. Силы трения
- •§ 2.6. Сила тяготения
- •§ 2.7. Энергия. Работа. Мощность
- •§ 2.8. Кинетическая энергия
- •§ 2.9. Потенциальная энергия
- •§ 2.10. Работа силы тяжести.
- •§ 2.11. Работа силы упругости. .
- •Глава 3. Механика жидкостей
- •§ 3.1. Давление в жидкости и газе
- •§ 3.2. Уравнение неразрывности
- •§ 3.3. Уравнение Бернулли
- •Полным давлением
- •Глава 4. Основы специальной теории относительности
- •§ 4.1. Постулаты специальной теории относительности
- •§ 4.2. Релятивистская кинематика
- •§ 4.3. Релятивистская динамика
- •Глава 5. Молекулярная физика
- •§ 5.1. Статистический и термодинамический методы
- •§ 5.2. Молекулярно-кинетическая теория.
- •§ 5.3. Уравнение состояния идеального газа
- •§ 5.4. Графическое представление изопроцессов
- •§ 5.5. Основное уравнение молекулярно -
- •§ 5.6. Распределение молекул идеального газа по
- •§ 5.8. Упругие свойства твердых тел
- •Глава 6. Основы Термодинамика
- •§ 6.1. Внутренняя энергия идеального газа.
- •§ 6.2. Первое начало термодинамики
- •§ 3.3. Работа газа при изменении его объема
- •§ 6.4. Круговой процесс (цикл).
- •§ 6.5. Теплоемкость удельная и молярная
- •§ 6.6. Применение первого начала термодинамики к
- •§ 6.7. Уравнение теплового баланса
- •§ 6.8. Второе начало термодинамики
- •§ 6.9. Тепловые двигатели и холодильные машины
- •§ 6.10. Цикл Карно
- •Глава 7. Основы электродинамика
- •§ 7.1. Электрический заряд и закон его сохранения
- •§ 7.2. Закон Кулона. Электростатическое поле и его
- •§ 7.3. Принцип суперпозиции. Графическое
- •§ 7.4. Работа сил электростатического поля.
- •§ 7.5. Разность потенциалов. Эквипотенциальные
- •§ 7.6. Проводники в электростатическом поле
- •7.7. Диэлектрики в электростатическом поле
- •§ 7.8. Электроемкость. Конденсаторы
- •§ 7.8. Энергия электростатического поля
- •§ 7.10. Постоянный электрический ток
- •§ 7.11. Сторонние силы. Электродвижущая сила и
- •§ 7.12. Закон Ома. Сопротивление проводников
- •§ 7.14. Работа и мощность тока. Закон Джоуля-Ленца
- •§ 7.15. Магнитное поле и его характеристики
- •§ 7.16. Закон Ампера. Взаимодействие параллельных
- •§ 7.17. Принцип суперпозиции магнитных полей.
- •§ 7.18. Сила Лоренца. Движение заряженных частиц в
- •§ 7.19. Магнитные свойства вещества
- •§ 7.20. Явление и закон электромагнитной индукции
- •§ 7.21. Правило Ленца. Эдс индукции в неподвижных и
- •§ 7.22. Индуктивность контура. Самоиндукция
- •§ 7.23. Взаимная индукция. Трансформаторы.
- •Глава 8. Колебания и волны
- •§ 8.1. Гармонические колебания и их характеристики
- •§ 8.2. Механические гармонические колебания
- •§ 8.3. Пружинный и математический маятники
- •§ 8.4. Свободные гармонические колебания в
- •§ 8.5. Вынужденные механические и электромагнитные
- •§ 8.6. Переменный электрический ток
- •§ 8.7. Резонанс в цепи переменного тока.
- •§ 8.8. Упругие и электромагнитные волны
- •§ 8.9. Электромагнитные волны
- •§ 8.10. Шкала электромагнитных волн.
- •Глава 9. Основы оптика
- •§ 9.1. Корпускулярная и волновая теории света
- •§ 9.2. Основные законы оптики
- •§ 9.3. Полное отражение
- •§ 9.4. Линзы и их основные характеристики
- •§ 9.5. Дисперсия света
- •§ 9.6 Интерференция
- •§ 9.7 Дифракция
- •§ 9.8. Поляризация света
- •§ 9.9. Излучение и спектры
- •Глава 10. Квантовая природа излучения
- •§ 10.1. Фотоэффект
- •§ 10.2 Давление света
- •Глава 11. Основы физики атома
- •§ 11.1. Линейчатый спектр атома водорода
- •§ 11.2. Физика атомного ядра
- •§ 11.3.Энергия связи ядра. Дефект массы ядра
- •§ 11.4. Ядерные силы. Модели ядра
- •§ 11.5. Радиоактивность
- •§ 11.6. Правила смещения. Закон радиоактивного
- •§ 11.7. Ядерные реакции
- •§ 11.8. Элементарные частицы
- •§ 11.9. Типы взаимодействий элементарных частиц
- •§ 11.10. Кварки
- •Приложения
- •Физические постоянные
- •3. Приставки системы си
- •4. Некоторые сведения векторной алгебры
§ 3.3. Уравнение Бернулли
Закон (принцип) Бернулли - давление жидкости, текущей в трубе, больше в тех частях трубы, где скорость ее движения меньше, и наоборот, в тех частях, где скорость больше, давление меньшее.
Уравнение Бернулли для стационарного течения идеальной несжимаемой жидкости
где р - статическое давление жидкости для определенного сечения трубки тока; υ - скорость жидкости для этого же сечения; динамическое давление жидкости для этого же сечения; h - высота, на которой расположено сечение; ρgh - гидростатическое давление.
Уравнение Бернулли - закон сохранения механической энергии применительно к установившемуся течению идеальной жидкости (уравнение выводится из закона сохранения энергии).
Гидростатическое давление - давление, обусловленное силой тяжести и зависящее от глубины под поверхностью жидкости:
где р - плотность жидкости; h - глубина столба жидкости.
Уравнение Бернулли для горизонтальной трубки тока()
Полным давлением
Применение уравнения Бернулли:
Манометры
Из уравнения Бернулли для горизонтальной трубки тока
и уравнения неразрывности
следует, что при течении жидкости по горизонтальной трубе, имеющей различные сечения, скорость жидкости больше в местах сужения, а статическое давление больше в более широких местах, т.е. там, где скорость меньше. Это можно продемонстрировать, установив вдоль трубы ряд манометров (рис. 3.3). В соответствии с уравнением Бернулли опыт показывает, что в манометрической трубке В, прикрепленной к узкой части трубы, уровень жидкости ниже, чем в манометрических трубках А и С, прикрепленных к широкой части трубы.
A
B
C
Рис. 3.3
A
B
C
Рис. 3.3
Водоструйный насос
Уменьшение статического давления в точках, где скорость потока больше, положено в основу работы водоструйного насоса. Струя воды подается в трубку, открытую в атмосферу, так, что давление на выходе из трубки равно атмосферному (рис. 3.4). В трубке имеется сужение, в этом месте давление меньше атмосферного. Это давление устанавливается и в откачиваемом сосуде. Воздух увлекается вытекающей с большой скоростью водой из узкого конца.
Вода
Воздух
Вода + воздух
Рис. 3.4
Вода
Воздух
Вода + воздух
Рис. 3.4
Трубка Пито - Прандтля состоит из двух изогнутых под прямым углом трубок, противоположные концы которых присоединены к манометру (рис. 3.5). С помощью одной из трубок измеряется полное давление (), с помощью другой - статическое (p).
Манометром измеряется разность давлений:
где - плотность жидкости в манометре.
С другой стороны, согласно уравнению Бернулли, разность давлений равна динамическому давлению:
p
Рис. 3.5
p
Рис. 3.5
Из этих формул искомая скорость потока жидкости
Скорость истечения жидкости через малое отверстие в стенке сосуда
Уравнение Бернулли для двух сечений (на уровне h1 свободной поверхности жидкости в сосуде и на уровне h2 выхода ее из отверстия; рис. 3.6):
где pl = р2 (атмосферное давление);
- скорости жидкости для двух сечений.
Рис. 3.6
Рис. 3.6
Тогда
(уравнение неразрывности). Если S1 >> S2, то членом можно пренебречь и
Формула Торричелли
где h - глубина, на которой находится отверстие относительно уровня жидкости в сосуде.