Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
glava_1.doc
Скачиваний:
46
Добавлен:
12.11.2019
Размер:
531.97 Кб
Скачать

Самопроизвольные и несамопроизвольные процессы

В любой системе два произвольно выбранные состояния (1 и 2) различаются тем, что процесс перехода из состояния 1 в состояние 2 протекает самопроизвольно, а обратный процесс перехода из состояния 2 в состояние 1 самопроизвольно не идет.

Отсюда можно заключить, что существует какой–то объективный критерий, позволяющий установить принципиальное различие между рассматриваемыми двумя состояниями системы.

Очевидно, что невозможно искать критерий направления отдельно, для любого мыслимого конкретного процесса в любой системе; логично рассмотреть какой–нибудь один, по возможности, простой процесс, для которого многовековый практический опыт позволяет четко указать, какое направление самопроизвольно, а какое несамопроизвольно. Опираясь на этот пример, можно доказать, что в природе существует некоторая функция состояния, изменение которой в любом мыслимом процессе, а не только в том, который был выбран для формулировки исходного постулата, позволяет однозначно определять, какие процессы самопроизвольны, а какие – нет.

Рассмотрим изолированную систему, состоящую из теплового резервуара, 1 моль идеального газа, заключенного в цилиндре с подвижным поршнем и устройства, позволяющего за счет перемещения поршня совершать работу.

Предположим, что газ обратимо изотермически расширяется от объема V1 до V2 (рис.5) и совершает работу А1. Энергия на совершение работы передается в форме тепла из резервуара. Совершаемая газом работа эквивалента полученной от резервуара энергии (Q1):

Q1 = = A1 (15)

Ф

ункция определятся не только изменением объема, но и температурой. Разделим обе части уравнения на Т:

= (16)

Из полученного равенства видно, что изменения, происходящие в изолированной системе при протекании обратимого процесса, могут быть охарактеризованы величиной , которая определяется только исходным (V1) и конечным (V2) состоянием системы. Увеличение параметра цилиндра с газом эквивалентно уменьшению параметра для теплового резервуара, то есть – = 0.

В

предельном случае необратимого (самопроизвольного) расширения идеального газа от V1 до V2, т.е. при расширении в вакууме, процесс происходит без совершения газом работы, т.к. Р = 0, следовательно pV = 0, и соответственно передачи энергии от резервуара в форме тепла не происходит: Q = 0. Таким образом, изменение внутренней энергии (U) для газа равно нулю (рис.6).

Однако состояние газа в резервуаре изменилось на величину , а состояние резервуара – нет. Поэтому в целом состояние системы изменилось (увеличилось) на величину ; >0.

Таким образом, протекание самопроизвольного процесса в изолированной системе в общем случае связано с возрастанием характеристики (параметра) состояния системы, которая получила название энтропии.

Из рассмотренного выше примера следует, что самопроизвольно в изолированной системе протекают те процессы, которые приводят к возрастанию энтропии системы. Таким образом, второй закон термодинамики гласит: «Если в изолированной системе протекают самопроизвольные процессы, то ее энтропия возрастает» (закон возрастания энтропии).

Если энтропия системы в исходном состоянии может быть выражена как: S1 = RlnV1, а в конечном состоянии S2=RlnV2, то изменение энтропии в результате протекания обратимого процесса S = S2 – S1 = или

S/обратимого процесса/ =

Соответственно для необратимого процесса

S/необратимого процесса/ >

Справедливость последнего выражения легко показать, исходя из первого закона термодинамики. В соответствии с первым законом термодинамики

U = Q – A (17)

Переведем систему из состояния 1 в состояние 2 обратимым и необратимым путем:

U обр. = Qобр. – Аобр. (18)

U необр. = Qнеобр. – Анеобр. (19)

Так как внутренняя энергия является функцией состояния, то U обр. = U необр.

Известно также, что Аобр. > А необр. Следовательно, Qобр. > Q необр.

S не зависит от пути процесса, т.к. является функцией состояния, т.e.

Sобр. = S необр.,

тогда

S/необр./ > (20)

или в общем случае

S (21)

Знак равенства относится к обратимым, знак неравенства – к необратимым процессам. Уравнение (21) является математическим выражением второго закона термодинамики.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]