
- •1.Идеальный газ, определение и свойства.
- •2.Термодинамическая система, термодин. Процесс, параметры идеал. Газа.
- •3.Уравнение состояния идеального газа. Физический смысл газовой постоянной.
- •4.Внутренняя энергия идеального газа. Параметр состояния.
- •5.Работа газа . Параметр процесса.
- •6.Теплоёмкость газа.
- •7. Газовые смеси.
- •9. Выражение 1-ого закона термодинамики для различных процессов.
- •10.Круговые циклы. Термодин. И холодильный коэф.
- •11. Цикл Карно. Теорема Карно.
- •12. Реальный газ. Парообразование в координатах pv. Теплота парообразования. Степень сухости пара.
- •13. Влажный воздух. Его св-ва.
- •15. Темпер. Поле тела. Темпер. Градиент.
- •16. Теплопроводность. Закон Фурье.
- •17. Теплопроводн. Плоск. Стенки. Осн. Ур-е теплопроводности.
- •18.Конвективный теплообмен.Уравнение Ньютона-Рихмана.Коэф. Теплоотдачи.
- •19. Опред. Коэф. Теплоотдачи с использ. Критериальных ур-ний.
- •20. Лучистый теплообмен. Уравнение Стефана-Больцмана.
- •21. Закон Кирхгофа, Ламберта.
- •22. Теплопередача. Ур-ние и коэф. Теплопередачи для плоской стенки.
- •23. Теплообменные аппараты. Опред. Поверх. Нагрева рекуперативных теплообменников.
- •24. Микроклимат помещений.
- •25.Сопротивление теплопередачи.
- •26. Теплоустойчивость ограждений. Коэффициент теплоусвоения s. Величина тепловой инерции d.
- •27. Воздухопроницаемость ограждений. Сопротивление воздухопроницаемости ограждений.
- •28. Определение тепловых потерь через ограждения(основные и добавочные). Правила обмера поверхностей охлаждения.
- •29. Определение тепловых потерь по укрупненным показателям. Удельная тепловая характеристика здания.
- •30. Системы отопления: осн. Элем., классификация, требования к отопит. Установке.
- •31. Сист. Водяного отопления с естественной и искусств. Циркуляцией. Осн. Схемы.
- •34.Трубопроводы систем центрального отопления, их соединения.
- •35.Расширительный бак.
- •36.Воздухоудаление.
- •37. Системы парового отопления. Принцип работы, классификация, основные схемы. Воздухоудаление из систем парового отопления. Область применения систем газового отопления.
- •38.Нагревательные приборы систем центр. Отопления.
- •39.Размещение отоп-ых приборов.
- •40. Коэффициент теплопередачи нагревательных приборов. Определение их поверхности нагрева.
- •41. Особенности расчета поверхности нагревательных приборов для однотрубной системы отопления.
- •42.Регулировка теплоотдачи нагр. Приборов.
- •43. Топливо.
- •44. Горение топлива. Теоретический и действительный объем воздуха, необходимый для горения топлива.
- •45.Способы сжигания топлива. Виды топочных устройств, их характеристики.
- •46. Котельная установка. Определение. Виды топочных устройств, их характеристики.
- •4 7.Централизованное теплоснабжение. Схема тэц. Тепловые сети, способы прокладки тепловых сетей, виды изоляции.
- •57. Газовые бытовые приборы.
- •48. Присоединение местных систем отопления к тепловым сетям (через задвижку, элеватор, водоподогреватель)
- •49.Назначение и классификация систем вентиляции, воздухообмена, способы его определения.
- •50.Естественная вентиляция: инфильтрация, аэрация, канальная система вентиляции.
- •51. Канальная вытяжная гравитационная система вентиляции, конструирование и её аэродинамический расчет.
- •52.Механическая система вентиляции. Ее элементы.
- •53.Устройства для очистки воздуха.
- •54. Устройства для подогрева воздуха.
- •55. Вентиляторы.
- •Газоснабжение. Основные схемы. Устройство системы газоснабжения.
- •Вопросы к экзамену по дисциплине «Инженерные сети и оборудование» для студентов дневной формы обучения(пгс)
1.Идеальный газ, определение и свойства.
Газы, молекулы которых не обладают силами взаимодействия, а сами молекулы представляют собой материальные точки с ничтожно малыми объёмами, называются идеальными газами. Понятие об идеальном газе введено для упрощения изучения термодинамических процессов и получения более простых расчётных формул.
Свойства идеального газа на основе молекулярно-кинетических представлений определяются исходя из физической модели идеального газа, в которой приняты следующие допущения:
•объём частицы газа равен нулю (то есть диаметр молекулы пренебрежимо мал по сравнению со средним расстоянием между ними);
•импульс передается только при соударениях (то есть силы притяжения между молекулами не учитываются, а силы отталкивания возникают только при соударениях);
•суммарная энергия частиц газа постоянна (то есть нет передачи энергии за счет передачи тепла или излучением);
•время взаимодействия между молекулами пренебрежимо мало по сравнению со средним временем между столкновениями;
2.Термодинамическая система, термодин. Процесс, параметры идеал. Газа.
Непрерывное изменение состояния рабочего тела в результате взаимодействия его с окруж. средой наз. термодинамическим процессом
Различают равновесные и неравновесные процессы. Процесс, протекающий при значительной разности t и давлений окружающей среды и рабочего тела и неравномерное их распределение по всей массе тела, наз. неравновесным. Если же процесс происходит бесконечно медленно и малой разности t окруж. среды и рабочего тела и равномерного распределения t и давления по всей массе тела, наз. равновесным.
К осн. параметрам состояния газов относятся: давление, t и удельный объем, плотность.
Давлением-результат удара газа о стенки сосуда, в кот он находиться..
Различают абсолютное давл или полное. Под абсолютным давлением подразумевается полное давление, под которым находится газ.
Рабс=Рб+gph, gph=Ризб
Где Рабс- абсолютное (полное) давление газа в сосуде, Рб- атмосферное давление в барометре, g- усоркние св. пад. в точке измерения, p- плотность жидкости, h-высота столба жидкости.
Под избыточным давлением понимают разность между абсолютным давлением, большим, чем атмосферное, и атмосферным давлением.
1атм=735.6мм.рт.ст.=1кг/см2=104кг/м2=105Па=1бар=10м.вод.ст
Температура-мера средней кинетической энергии хаотического движения молекул рабочего тела. Температура - параметр, характеризующий тепловое состояние тела. Температура тела определяет направление возможного самопроизвольного перехода тепла от тела с большей температурой к телу с меньшей температурой.
Для измерения температур приняты стоградусная шкала, шкала Кельвина, шкала Фаренгейта. В стоградусной шкале при pб =101,325кПа(760 мм.рт.ст.) за 00 принимается температура таяния льда, а за 1000С – температура кипения воды. Градус этой шкалы обозначается через 0С.
Удельным объемом, v, мэ/кг, называется объем единицы массы газа, т. е. v=V/М где V- полный объем газа, м3; М - масса газа, кг, Обратная величина, кг/м3, P=G/V явл.
Плотностью, представляющей собой количество вещества, заключенного в 1 м3, т. е. массу единицы объема.