
- •Т. А. Гаврилова в. Ф. Хорошевский
- •Санкт-Петербург
- •Предисловие
- •Об авторах
- •1.1.2. Зарождение нейрокибернетики
- •1.1.3. От кибернетики «черного ящика» к ии
- •1.1.4. История искусственного интеллекта в России
- •1.2. Основные направления исследований в области искусственного интеллекта
- •1.2.1. Представление знаний и разработка систем, основанных на знаниях (knowledge-based
- •1.2.2. Программное обеспечение систем
- •1.2.3. Разработка естественно-языковых интерфейсов и машинный перевод (natural
- •1.2.4. Интеллектуальные роботы (robotics)
- •1.2.5. Обучение и самообучение (machine
- •1.2.6. Распознавание образов (pattern
- •1.2.7. Новые архитектуры компьютеров (new
- •1.2.8. Игры и машинное творчество
- •1.2.9. Другие направления
- •1.3. Представление знаний и вывод на знаниях
- •1.3.1. Данные и знания
- •1.3.2. Модели представления знаний
- •Структура фрейма
- •1.3.3. Вывод на знаниях
- •1.4. Нечеткие знания
- •1.4.1. Основы теории нечетких множеств
- •1.4.2. Операции с нечеткими знаниями
- •1.5. Прикладные интеллектуальные системы
- •2.2. Классификация систем, основанных на знаниях
- •2.2.1. Классификация по решаемой задаче
- •2.2.2. Классификация по связи с реальным временем
- •2.2.3. Классификация по типу эвм
- •2.2.4. Классификация по степени интеграции с другими программами
- •2.3. Коллектив разработчиков
- •2.4. Технология проектирования и разработки
- •2.4.1. Проблемы разработки промышленных эс
- •2.4.2. Выбор подходящей проблемы
- •2.4.3. Технология быстрого прототипирования
- •2.4.4. Развитие прототипа до промышленной эс
- •2.4.5. Оценка системы
- •2.4.6. Стыковка системы
- •2.4.7. Поддержка системы
- •Теоретические аспекты инженерии знаний
- •3.1. Поле знаний
- •3.1.1. О языке описания поля знаний
- •3.1.2. Семиотическая модель поля знаний
- •3.1.3. «Пирамида» знаний
- •3.2. Стратегии получения знаний
- •3.3. Теоретические аспекты извлечения знаний
- •3.3.1. Психологический аспект
- •3.3.2. Лингвистический аспект
- •3.3.3. Гносеологический аспект извлечения знаний
- •3.4. Теоретические аспекты структурирования знаний
- •3.4.1. Историческая справка
- •3.4.2. Иерархический подход
- •3.4.3. Традиционные методологии структурирования
- •3.4.4. Объектно-структурный подход (осп)
- •Технологии инженерии знаний
- •4.1. Классификация методов практического извлечения знаний
- •4.2. Коммуникативные методы
- •4.2.1. Пассивные методы
- •Сравнительные характеристики пассивных методов извлечения знаний
- •4.2.2. Активные индивидуальные методы
- •Сравнительные характеристики активных индивидуальных методов извлечения
- •4.2.3. Активные групповые методы
- •4.3. Текстологические методы
- •4.4. Простейшие методы структурирования
- •4.4.1. Алгоритм для «чайников»
- •4.4.2. Специальные методы структурирования
- •4.5. Состояние и перспективы автоматизированного приобретения знаний
- •4.5.1. Эволюция систем приобретения знаний
- •4.5.2. Современное состояние автоматизированных систем приобретения знаний
- •4.6.2. Имитация консультаций
- •4.6.3. Интегрированные среды приобретения знаний
- •4.6.4. Приобретение знаний из текстов
- •4.6.5. Инструментарий прямого приобретения
- •Формы сообщений
- •5.1.1. Семантические пространства и психологическое шкалирование
- •5.1.2. Методы многомерного шкалирования
- •5.1.3. Использование метафор для выявления «скрытых» структур знаний
- •5.2. Метод репертуарных решеток
- •5.2.1. Основные понятия
- •5.2.2. Методы выявления конструктов
- •5.2.3. Анализ репертуарных решеток
- •5.2.4. Автоматизированные методы
- •5.3. Управление знаниями
- •5.3.1. Что такое «управление знаниями»
- •5.3.2. Управление знаниям и корпоративная память
- •5.3.3. Системы omis
- •5.3.4. Особенности разработки omis
- •5.4. Визуальное проектирование баз знаний как инструмент познания
- •5.4.1. От понятийных карт к семантическим сетям
- •5.4.2. База знаний как познавательный инструмент
- •5.5. Проектирование гипермедиа бд и адаптивных обучающих систем
- •5.5.1. Гипертекстовые системы
- •5.5.2. От мультимедиа к гипермедиа
- •5.5.3. На пути к адаптивным обучающим системам
- •6.1.3. Инструментальные средства поддержки разработки систем по
- •6.2. Методологии создания и модели жизненного цикла интеллектуальных систем
- •6.3. Языки программирования для ии и языки представления знаний
- •6.4. Инструментальные пакеты для ии
- •6.5. WorkBench-системы
- •Пример разработки системы, основанной на знаниях
- •7.1. Продукционно-фреймовый япз pilot/2
- •7.1.1. Структура пилот-программ и управление выводом
- •7.1.2. Декларативное представление данных и знаний
- •7.1.3. Процедурные средства языка
- •7.2. Психодиагностика — пример предметной области для построения экспертных систем
- •7.2.1. Особенности предметной области
- •7.2.2. Батарея психодиагностических эс «Ориентир»
- •7.3. Разработка и реализация психодиагностической эс «Cattell»
- •7.3.1. Архитектура системы и ее база знаний
- •7.3.2. Общение с пользователем и опрос испытуемых
- •7.3.3. Вывод портретов и генерация их текстовых представлений
- •7.3.4. Помощь и объяснения в эс «Cattell»
- •8.1.2. Html — язык гипертекстовой разметки Интернет-документов
- •8.1.3. Возможности представления знаний на базе языка html
- •8.2. Онтологии и онтологические системы
- •8.2.1. Основные определения
- •8.2.2. Модели онтологии и онтологической системы
- •8.2.3. Методологии создания и «жизненный цикл» онтологии
- •Фрагмент описания аксиомы
- •8.2.4. Примеры онтологии
- •8.3. Системы и средства представления онтологических знаний
- •8.8.1. Основные подходы
- •8.3.2. Инициатива (ка)2 и инструментарий Ontobroker
- •8.3.3. Проект shoe — спецификация онтологии и инструментарий
- •8.3.4. Другие подходы и тенденции
- •9.1.2. Основные понятия
- •9.2.2. Инструментарий AgentBuilder
- •9.2.3. Система Bee-gent
- •9.3. Информационный поиск в среде Интернет
- •9.3.1. Машины поиска
- •9.3.2. Неспециализированные и специализированные поисковые агенты
- •9.3.3. Системы интеллектуальных поисковых агентов
- •Заключение
- •Литература
- •Содержание
- •Базы знаний интеллектуальных систем
- •196105, Санкт-Петербург, ул. Благодатная, 67.
- •197110, Санкт-Петербург, Чкаловский пр., 15.
5.4.2. База знаний как познавательный инструмент
Когда семантическая сеть создается как прообраз базы знаний, разработчик должен фактически моделировать знания эксперта. Особенно глубокого понимания требует разработка функциональной структуры.
Определение структуры ЕСЛИ-ТО области знаний вынуждает четко формулировать принципы принятия решения. Нельзя считать, что просто разработка поля знаний системы обязательно приведет к получению полных функциональных знаний в данной области.
Разработка экспертных систем стала использоваться как инструмент познания сравнительно недавно. Lippert [Lippert, 1988], который является одним из пионеров применения экспертных систем в качестве инструментов познания, утверждает, что задания по созданию небольших базисов правил являются очень полезными для решения педагогических проблем и структурирования знаний для учеников от шестого класса до взрослых. Изучение при этом становится более осмысленным, так как ученики оценивают не только сам процесс мышления, но также и результаты этого процесса, то есть полученную базу знаний. Создание базы знаний требует от учеников умения отделять друг от друга факты, переменные и правила, относящиеся к связям между составляющими области знаний.
Например, Lai [Lai, 1989] установил, что после того, как студенты-медики создадут медицинскую экспертную систему, они повышают свое умение в плане аргументации и получают более глубокие знания по изучаемому предмету. Шесть студентов-первокурсников физического факультета, которые использовали экспертные системы для составления вопросов, принятия решений, формулировки правил и объяснений относительно движения частицы в соответствии с законами классической физики, получили более глубокие знания в данной области благодаря тщательной работе, связанной с кодированием информации и обработкой большого материала для получения ясного и связного содержания, а следовательно, и большей семантической глубины [Lippert & Finley, 1988].
Таким образом, создание базы знаний экспертной системы способствует более глубокому усвоению знаний, а визуальная спецификация усиливает прозрачность и наглядность представлений.
Когда компьютеры используются в обучении как инструмент познания, а не как контрольно-обучающие системы (обучающие компьютеры), они расширяют возможности автоматизированных обучающих систем (АОС), одновременно развивая мыслительные способности и знания учеников. Результатом такого сотрудничества учащегося и компьютера является значительное повышение эффективности обучения. Компьютеры не могут и не должны управлять процессом обучения. Скорее, компьютеры должны использоваться для того, чтобы помочь ученикам приобрести знания.
В данном параграфе будет описываться автоматизированное рабочее место (АРМ) инженера по знаниям KEW (Knowledge Engineering Workbench) [Гаврилова, 1995; Гаврилова, Воинов, 1995-1997], который наряду с такими программами, как SemNet [Fisher 1990, 1992], Learning Tool [Kozma, 1987], TextVision [Kommers, 1989] или Inspiration, дает возможность ученикам, экспертам или аналитикам связать между собой изучаемые ими понятия в многомерные сети представлений и описать природу связей между всеми входящими в сеть понятиями.
Последняя версия KEW, созданная совместно с Воиновым А. В., получила первую премию на выставке программных систем IV Национальной конференции по искусственному интеллекту в 1994 г. в разделе программных инструментари-ев разработки интеллектуальных систем. KEW демонстрирует жизнеспособность технологии автоматизированного проектирования интеллектуальных систем (АПРИС) или CAKE (Computer Aided Knowledge Engineering), впервые описанной в работе [Гаврилова, 1992].
KEW предназначен для интеллектуальной поддержки деятельности инженера по знаниям на протяжении всего жизненного цикла разработки экспертной системы, включая стадии — идентификации проблемы, получения знаний, структурирования знаний, формализации, программной реализации, тестирования.
Центральным блоком KEW является графический структуризатор знаний KNOST (KNOwledge STucturer). Система KNOST поддерживает последовательную графическую реализацию ОСА (см. параграф 3.4) и автоматическую компиляцию БЗ из графической спецификации.
Рис. 5.10. Интерфейс АРМа инженера по знаниям
Интерфейс KNOST состоит из трех основных частей (рис. 5.10):
• панель концептуальной структуры;
• панель гипертекста;
• панель функциональной структуры.
Панель концептуальной структуры предназначена для графического структурирования знаний. Она позволяет определить понятия и обозначить связи между ними в форме концептуальной структуры Sk.
В панель гипертекста можно поместить любой комментарий, связанный с объектом, определенным на панели концептуальной структуры понятий.
Основное назначение панели функциональной структуры Sf — представить наглядно в форме строк таблицы причинно-следственные и другие функциональные взаимосвязи между понятиями концептуальной структуры, на основании которых эксперт принимает решения. Столбцы таблицы формируются простейшей операцией drag-and-drop из понятий на панели концептуальной структуры.
После того как модели Sk и Sf созданы, KNOST автоматически компилирует базу знаний на ПРОЛОГе из созданной графической спецификации и моделирует работу экспертной системы. Это удобно для быстрого наглядного прототипирования ЭС и для отладки БЗ совместно с экспертом.