
- •Т. А. Гаврилова в. Ф. Хорошевский
- •Санкт-Петербург
- •Предисловие
- •Об авторах
- •1.1.2. Зарождение нейрокибернетики
- •1.1.3. От кибернетики «черного ящика» к ии
- •1.1.4. История искусственного интеллекта в России
- •1.2. Основные направления исследований в области искусственного интеллекта
- •1.2.1. Представление знаний и разработка систем, основанных на знаниях (knowledge-based
- •1.2.2. Программное обеспечение систем
- •1.2.3. Разработка естественно-языковых интерфейсов и машинный перевод (natural
- •1.2.4. Интеллектуальные роботы (robotics)
- •1.2.5. Обучение и самообучение (machine
- •1.2.6. Распознавание образов (pattern
- •1.2.7. Новые архитектуры компьютеров (new
- •1.2.8. Игры и машинное творчество
- •1.2.9. Другие направления
- •1.3. Представление знаний и вывод на знаниях
- •1.3.1. Данные и знания
- •1.3.2. Модели представления знаний
- •Структура фрейма
- •1.3.3. Вывод на знаниях
- •1.4. Нечеткие знания
- •1.4.1. Основы теории нечетких множеств
- •1.4.2. Операции с нечеткими знаниями
- •1.5. Прикладные интеллектуальные системы
- •2.2. Классификация систем, основанных на знаниях
- •2.2.1. Классификация по решаемой задаче
- •2.2.2. Классификация по связи с реальным временем
- •2.2.3. Классификация по типу эвм
- •2.2.4. Классификация по степени интеграции с другими программами
- •2.3. Коллектив разработчиков
- •2.4. Технология проектирования и разработки
- •2.4.1. Проблемы разработки промышленных эс
- •2.4.2. Выбор подходящей проблемы
- •2.4.3. Технология быстрого прототипирования
- •2.4.4. Развитие прототипа до промышленной эс
- •2.4.5. Оценка системы
- •2.4.6. Стыковка системы
- •2.4.7. Поддержка системы
- •Теоретические аспекты инженерии знаний
- •3.1. Поле знаний
- •3.1.1. О языке описания поля знаний
- •3.1.2. Семиотическая модель поля знаний
- •3.1.3. «Пирамида» знаний
- •3.2. Стратегии получения знаний
- •3.3. Теоретические аспекты извлечения знаний
- •3.3.1. Психологический аспект
- •3.3.2. Лингвистический аспект
- •3.3.3. Гносеологический аспект извлечения знаний
- •3.4. Теоретические аспекты структурирования знаний
- •3.4.1. Историческая справка
- •3.4.2. Иерархический подход
- •3.4.3. Традиционные методологии структурирования
- •3.4.4. Объектно-структурный подход (осп)
- •Технологии инженерии знаний
- •4.1. Классификация методов практического извлечения знаний
- •4.2. Коммуникативные методы
- •4.2.1. Пассивные методы
- •Сравнительные характеристики пассивных методов извлечения знаний
- •4.2.2. Активные индивидуальные методы
- •Сравнительные характеристики активных индивидуальных методов извлечения
- •4.2.3. Активные групповые методы
- •4.3. Текстологические методы
- •4.4. Простейшие методы структурирования
- •4.4.1. Алгоритм для «чайников»
- •4.4.2. Специальные методы структурирования
- •4.5. Состояние и перспективы автоматизированного приобретения знаний
- •4.5.1. Эволюция систем приобретения знаний
- •4.5.2. Современное состояние автоматизированных систем приобретения знаний
- •4.6.2. Имитация консультаций
- •4.6.3. Интегрированные среды приобретения знаний
- •4.6.4. Приобретение знаний из текстов
- •4.6.5. Инструментарий прямого приобретения
- •Формы сообщений
- •5.1.1. Семантические пространства и психологическое шкалирование
- •5.1.2. Методы многомерного шкалирования
- •5.1.3. Использование метафор для выявления «скрытых» структур знаний
- •5.2. Метод репертуарных решеток
- •5.2.1. Основные понятия
- •5.2.2. Методы выявления конструктов
- •5.2.3. Анализ репертуарных решеток
- •5.2.4. Автоматизированные методы
- •5.3. Управление знаниями
- •5.3.1. Что такое «управление знаниями»
- •5.3.2. Управление знаниям и корпоративная память
- •5.3.3. Системы omis
- •5.3.4. Особенности разработки omis
- •5.4. Визуальное проектирование баз знаний как инструмент познания
- •5.4.1. От понятийных карт к семантическим сетям
- •5.4.2. База знаний как познавательный инструмент
- •5.5. Проектирование гипермедиа бд и адаптивных обучающих систем
- •5.5.1. Гипертекстовые системы
- •5.5.2. От мультимедиа к гипермедиа
- •5.5.3. На пути к адаптивным обучающим системам
- •6.1.3. Инструментальные средства поддержки разработки систем по
- •6.2. Методологии создания и модели жизненного цикла интеллектуальных систем
- •6.3. Языки программирования для ии и языки представления знаний
- •6.4. Инструментальные пакеты для ии
- •6.5. WorkBench-системы
- •Пример разработки системы, основанной на знаниях
- •7.1. Продукционно-фреймовый япз pilot/2
- •7.1.1. Структура пилот-программ и управление выводом
- •7.1.2. Декларативное представление данных и знаний
- •7.1.3. Процедурные средства языка
- •7.2. Психодиагностика — пример предметной области для построения экспертных систем
- •7.2.1. Особенности предметной области
- •7.2.2. Батарея психодиагностических эс «Ориентир»
- •7.3. Разработка и реализация психодиагностической эс «Cattell»
- •7.3.1. Архитектура системы и ее база знаний
- •7.3.2. Общение с пользователем и опрос испытуемых
- •7.3.3. Вывод портретов и генерация их текстовых представлений
- •7.3.4. Помощь и объяснения в эс «Cattell»
- •8.1.2. Html — язык гипертекстовой разметки Интернет-документов
- •8.1.3. Возможности представления знаний на базе языка html
- •8.2. Онтологии и онтологические системы
- •8.2.1. Основные определения
- •8.2.2. Модели онтологии и онтологической системы
- •8.2.3. Методологии создания и «жизненный цикл» онтологии
- •Фрагмент описания аксиомы
- •8.2.4. Примеры онтологии
- •8.3. Системы и средства представления онтологических знаний
- •8.8.1. Основные подходы
- •8.3.2. Инициатива (ка)2 и инструментарий Ontobroker
- •8.3.3. Проект shoe — спецификация онтологии и инструментарий
- •8.3.4. Другие подходы и тенденции
- •9.1.2. Основные понятия
- •9.2.2. Инструментарий AgentBuilder
- •9.2.3. Система Bee-gent
- •9.3. Информационный поиск в среде Интернет
- •9.3.1. Машины поиска
- •9.3.2. Неспециализированные и специализированные поисковые агенты
- •9.3.3. Системы интеллектуальных поисковых агентов
- •Заключение
- •Литература
- •Содержание
- •Базы знаний интеллектуальных систем
- •196105, Санкт-Петербург, ул. Благодатная, 67.
- •197110, Санкт-Петербург, Чкаловский пр., 15.
1.1.4. История искусственного интеллекта в России
В 1954 г. в МГУ начал свою работу семинар «Автоматы и мышление» под руководством академика Ляпунова А. А. (1911-1973), одного из основателей российской кибернетики. В этом семинаре принимали участие физиологи, лингвисты, психологи, математики. Принято считать, что именно в это время родился искусственный интеллект в России. Как и за рубежом, выделились два основных направления — нейрокибернетики и кибернетики «черного ящика».
В 1954-1964 гг. создаются отдельные программы и проводятся исследования в области поиска решения логических задач. В Ленинграде (ЛОМИ — Ленинградское отделение математического института им. Стеклова) создается программа АЛПЕВ ЛОМИ, автоматически доказывающая теоремы. Она основана на оригинальном обратном выводе Маслова, аналогичном методу резолюций Робинсона. Среди наиболее значимых результатов, полученных отечественными учеными в 60-е годы, следует отметить алгоритм «Кора» М. М. Бонгарда, моделирующий деятельность человеческого мозга при распознавании образов. Большой вклад в становление российской школы ИИ внесли выдающиеся ученые ЦетлинМ.Л., Пушкин В. Н., Гаврилов М. А, чьи ученики и явились пионерами этой науки в России (например, знаменитая Гавриловская школа).
В 1965-1980 гг. происходит рождение нового направления — ситуационного управления (соответствует представлению знаний, в западной терминологии). Основателем этой научной школы стал проф. Поспелов Д. А. Были разработаны специальные модели представления ситуаций — представления знаний [Поспелов, 1986]. В ИПМ АН СССР был создай язык символьной обработки данных РЕФАЛ [Тургин, 1968].
При том, что отношение к новым наукам в советской России всегда было настороженное, наука с таким «вызывающим» названием тоже не избежала этой участи и была встречена в Академии наук в штыки [Поспелов, 1997]. К счастью, даже среди членов Академии наук СССР нашлись люди, не испугавшиеся столь необычного словосочетания в качестве названия научного направления. Двое из них сыграли огромную роль в борьбе за признание ИИ в нашей стране. Это были академики А. И. Берг и Г. С. Поспелов.
Только в 1974 году при Комитете по системному анализу при президиуме АН СССР был создан Научный совет по проблеме «Искусственный интеллект», его возглавил Г. С. Поспелов, его заместителями были избраны Д. А. Поспелов и Л. И. Микулич. В состав совета входили на разных этапах М. Г. Гаазе-Рапопорт, Ю. И. Журавлев, Л. Т. Кузин, А. С. Нариньяни, Д. Е. Охоцимский, А. И. Поло-винкин, О. К. Тихомиров, В. В. Чавчанидзе.
По инициативе Совета было организовано пять комплексных научных проектов, которые были возглавлены ведущими специалистами в данной области. Проекты объединяли исследования в различных коллективах страны: «Диалог» (работы по пониманию естественного языка, руководители А. П. Ершов, А. С. Нариньяни), «Ситуация» (ситуационное управление, Д. А. Поспелов), «Банк» (банки данных, Л. Т. Кузин), «Конструктор» (поисковое конструирование, А. И. Половинкин), «Интеллект робота» (Д. Е. Охоцимский).
В 1980-1990 гг. проводятся активные исследования в области представления знаний, разрабатываются языки представления знаний, экспертные системы (более 300).
В 1988 г. создается АИИ — Ассоциация искусственного интеллекта. Ее членами являются более 300 исследователей. Президентом Ассоциации единогласно избирается Д. А. Поспелов, выдающийся ученый, чей вклад в развитие ИИ в России трудно переоценить. Крупнейшие центры — в Москве, Петербурге, Пе-реславле-Залесском, Новосибирске. В научный совет Ассоциации входят ведущие исследователи в области ИИ — В. П. Гладун, В. И. Городецкий, Г. С. Осипов, Э. В. Попов, В. Л. Стефанкж, В. Ф. Хорошевский, В. К. Финн, Г. С. Цейтин, А. С. Эрлих и другие ученые. В рамках Ассоциации проводится большое количество исследований, организуются школы для молодых специалистов, семинары, симпозиумы, раз в два года собираются объединенные конференции, издается научный журнал.
Уровень теоретических исследований по искусственному интеллекту в России ничуть не ниже мирового. К сожалению, начиная с 80-х гг. на прикладных работах начинает сказываться постепенное отставание в технологии. На данный момент отставание в области разработки промышленных интеллектуальных систем составляет порядка 3-5 лет.