
- •Т. А. Гаврилова в. Ф. Хорошевский
- •Санкт-Петербург
- •Предисловие
- •Об авторах
- •1.1.2. Зарождение нейрокибернетики
- •1.1.3. От кибернетики «черного ящика» к ии
- •1.1.4. История искусственного интеллекта в России
- •1.2. Основные направления исследований в области искусственного интеллекта
- •1.2.1. Представление знаний и разработка систем, основанных на знаниях (knowledge-based
- •1.2.2. Программное обеспечение систем
- •1.2.3. Разработка естественно-языковых интерфейсов и машинный перевод (natural
- •1.2.4. Интеллектуальные роботы (robotics)
- •1.2.5. Обучение и самообучение (machine
- •1.2.6. Распознавание образов (pattern
- •1.2.7. Новые архитектуры компьютеров (new
- •1.2.8. Игры и машинное творчество
- •1.2.9. Другие направления
- •1.3. Представление знаний и вывод на знаниях
- •1.3.1. Данные и знания
- •1.3.2. Модели представления знаний
- •Структура фрейма
- •1.3.3. Вывод на знаниях
- •1.4. Нечеткие знания
- •1.4.1. Основы теории нечетких множеств
- •1.4.2. Операции с нечеткими знаниями
- •1.5. Прикладные интеллектуальные системы
- •2.2. Классификация систем, основанных на знаниях
- •2.2.1. Классификация по решаемой задаче
- •2.2.2. Классификация по связи с реальным временем
- •2.2.3. Классификация по типу эвм
- •2.2.4. Классификация по степени интеграции с другими программами
- •2.3. Коллектив разработчиков
- •2.4. Технология проектирования и разработки
- •2.4.1. Проблемы разработки промышленных эс
- •2.4.2. Выбор подходящей проблемы
- •2.4.3. Технология быстрого прототипирования
- •2.4.4. Развитие прототипа до промышленной эс
- •2.4.5. Оценка системы
- •2.4.6. Стыковка системы
- •2.4.7. Поддержка системы
- •Теоретические аспекты инженерии знаний
- •3.1. Поле знаний
- •3.1.1. О языке описания поля знаний
- •3.1.2. Семиотическая модель поля знаний
- •3.1.3. «Пирамида» знаний
- •3.2. Стратегии получения знаний
- •3.3. Теоретические аспекты извлечения знаний
- •3.3.1. Психологический аспект
- •3.3.2. Лингвистический аспект
- •3.3.3. Гносеологический аспект извлечения знаний
- •3.4. Теоретические аспекты структурирования знаний
- •3.4.1. Историческая справка
- •3.4.2. Иерархический подход
- •3.4.3. Традиционные методологии структурирования
- •3.4.4. Объектно-структурный подход (осп)
- •Технологии инженерии знаний
- •4.1. Классификация методов практического извлечения знаний
- •4.2. Коммуникативные методы
- •4.2.1. Пассивные методы
- •Сравнительные характеристики пассивных методов извлечения знаний
- •4.2.2. Активные индивидуальные методы
- •Сравнительные характеристики активных индивидуальных методов извлечения
- •4.2.3. Активные групповые методы
- •4.3. Текстологические методы
- •4.4. Простейшие методы структурирования
- •4.4.1. Алгоритм для «чайников»
- •4.4.2. Специальные методы структурирования
- •4.5. Состояние и перспективы автоматизированного приобретения знаний
- •4.5.1. Эволюция систем приобретения знаний
- •4.5.2. Современное состояние автоматизированных систем приобретения знаний
- •4.6.2. Имитация консультаций
- •4.6.3. Интегрированные среды приобретения знаний
- •4.6.4. Приобретение знаний из текстов
- •4.6.5. Инструментарий прямого приобретения
- •Формы сообщений
- •5.1.1. Семантические пространства и психологическое шкалирование
- •5.1.2. Методы многомерного шкалирования
- •5.1.3. Использование метафор для выявления «скрытых» структур знаний
- •5.2. Метод репертуарных решеток
- •5.2.1. Основные понятия
- •5.2.2. Методы выявления конструктов
- •5.2.3. Анализ репертуарных решеток
- •5.2.4. Автоматизированные методы
- •5.3. Управление знаниями
- •5.3.1. Что такое «управление знаниями»
- •5.3.2. Управление знаниям и корпоративная память
- •5.3.3. Системы omis
- •5.3.4. Особенности разработки omis
- •5.4. Визуальное проектирование баз знаний как инструмент познания
- •5.4.1. От понятийных карт к семантическим сетям
- •5.4.2. База знаний как познавательный инструмент
- •5.5. Проектирование гипермедиа бд и адаптивных обучающих систем
- •5.5.1. Гипертекстовые системы
- •5.5.2. От мультимедиа к гипермедиа
- •5.5.3. На пути к адаптивным обучающим системам
- •6.1.3. Инструментальные средства поддержки разработки систем по
- •6.2. Методологии создания и модели жизненного цикла интеллектуальных систем
- •6.3. Языки программирования для ии и языки представления знаний
- •6.4. Инструментальные пакеты для ии
- •6.5. WorkBench-системы
- •Пример разработки системы, основанной на знаниях
- •7.1. Продукционно-фреймовый япз pilot/2
- •7.1.1. Структура пилот-программ и управление выводом
- •7.1.2. Декларативное представление данных и знаний
- •7.1.3. Процедурные средства языка
- •7.2. Психодиагностика — пример предметной области для построения экспертных систем
- •7.2.1. Особенности предметной области
- •7.2.2. Батарея психодиагностических эс «Ориентир»
- •7.3. Разработка и реализация психодиагностической эс «Cattell»
- •7.3.1. Архитектура системы и ее база знаний
- •7.3.2. Общение с пользователем и опрос испытуемых
- •7.3.3. Вывод портретов и генерация их текстовых представлений
- •7.3.4. Помощь и объяснения в эс «Cattell»
- •8.1.2. Html — язык гипертекстовой разметки Интернет-документов
- •8.1.3. Возможности представления знаний на базе языка html
- •8.2. Онтологии и онтологические системы
- •8.2.1. Основные определения
- •8.2.2. Модели онтологии и онтологической системы
- •8.2.3. Методологии создания и «жизненный цикл» онтологии
- •Фрагмент описания аксиомы
- •8.2.4. Примеры онтологии
- •8.3. Системы и средства представления онтологических знаний
- •8.8.1. Основные подходы
- •8.3.2. Инициатива (ка)2 и инструментарий Ontobroker
- •8.3.3. Проект shoe — спецификация онтологии и инструментарий
- •8.3.4. Другие подходы и тенденции
- •9.1.2. Основные понятия
- •9.2.2. Инструментарий AgentBuilder
- •9.2.3. Система Bee-gent
- •9.3. Информационный поиск в среде Интернет
- •9.3.1. Машины поиска
- •9.3.2. Неспециализированные и специализированные поисковые агенты
- •9.3.3. Системы интеллектуальных поисковых агентов
- •Заключение
- •Литература
- •Содержание
- •Базы знаний интеллектуальных систем
- •196105, Санкт-Петербург, ул. Благодатная, 67.
- •197110, Санкт-Петербург, Чкаловский пр., 15.
4.6.4. Приобретение знаний из текстов
Как было указано в параграфе 4.3, даже ручные методы выявления знаний из текста крайне слабо разработаны. В тех же немногих случаях, когда применяются автоматизированные методики, речь, как правило, идет о методах лексико-семантического анализа, а также о моделях понимания текста.
Наибольшую известность имеют модели понимания на лингвистическом уровне. Системы, основанные на них, состоят в большинстве случаев из двух частей:
• первая — морфологический и синтаксический анализ;
• вторая — семантический анализ, который использует результаты работы первой части, а также словарную или справочную информацию для построения формализованного образа текста.
Говоря о семантическом анализе текста, надо иметь в виду, что всякие отношения текстах его семантикой начинаются после того, как в нашем распоряжении оказывается некоторая модель действительности. Объектами этой модели, в частности, могут являться индивиды и отношения.
Таким образом, первая проблема, возникающая при попытках автоматического извлечения знаний из текста, — это выявление свойств элементов текста для соотнесения этих элементов с объектами модели. Крайне редко эти свойства присутствуют в тексте эксплицитно, то есть явно.
Вторая особенность существующих систем анализа текста — это, как правило, необходимость использования словаря предметной области для выполнения морфологического анализа, выделения имен и словосочетаний и т. д. Однако требование предварительного создания словаря предметной области одновременно сильно осложняет задачу и уменьшает степень универсальности получаемой системы.
Понимание текста на семантическом уровне предполагает выявление не только лингвистических, но и логических отношений между языковыми объектами [Апресян, 1974]. Среди подходов к пониманию текста на семантическом уровне следует выделить модели типа «смысл — текст», в частности, модель семантик предпочтения [Wilks, 1976], модель концептуальной зависимости [Хейес-Рот и др., 1987]. В модели «смысл — текст» [Мельчук, 1974] предлагается семантическое представление на основе семантического графа и описания коммуникативной структуры текста.
В системе KRITON [Diderich, Ruchman, May, 1987] анализ текста используется для выявления хорошо структурированных знаний из книг, документов, описаний, инструкций. Основанный на контент-анализе метод протокольного анализа используется для выявления процедурных знаний. Он осуществляется в пять шагов.
1. Протокол делится на сегменты на основании пауз, которые делает эксперт в процессе записи.
2. Семантический анализ сегментов, формирование высказываний для каждого сегмента.
3. Из текста выделяются операторы и аргументы.
4. Делается попытка поиска по образцу в БЗ для обнаружения переменных в высказываниях (переменная вставляется в высказывание, если соответствующая ссылка в тексте не обнаружена).
5. Утверждения упорядочиваются в соответствии с их появлением в протоколе.
В системе ТАКТ (Tool for Acquisition of Knowledge from Text) [Kaplan, Berry-Rog-ghe, 1991] предполагается предварительная подготовка (разметка посредством введения явной скобочной структуры) предложений текста до начала работы текстового анализатора. В результате анализа выделяются объекты, процессы и отношения каузального характера.