
- •Т. А. Гаврилова в. Ф. Хорошевский
- •Санкт-Петербург
- •Предисловие
- •Об авторах
- •1.1.2. Зарождение нейрокибернетики
- •1.1.3. От кибернетики «черного ящика» к ии
- •1.1.4. История искусственного интеллекта в России
- •1.2. Основные направления исследований в области искусственного интеллекта
- •1.2.1. Представление знаний и разработка систем, основанных на знаниях (knowledge-based
- •1.2.2. Программное обеспечение систем
- •1.2.3. Разработка естественно-языковых интерфейсов и машинный перевод (natural
- •1.2.4. Интеллектуальные роботы (robotics)
- •1.2.5. Обучение и самообучение (machine
- •1.2.6. Распознавание образов (pattern
- •1.2.7. Новые архитектуры компьютеров (new
- •1.2.8. Игры и машинное творчество
- •1.2.9. Другие направления
- •1.3. Представление знаний и вывод на знаниях
- •1.3.1. Данные и знания
- •1.3.2. Модели представления знаний
- •Структура фрейма
- •1.3.3. Вывод на знаниях
- •1.4. Нечеткие знания
- •1.4.1. Основы теории нечетких множеств
- •1.4.2. Операции с нечеткими знаниями
- •1.5. Прикладные интеллектуальные системы
- •2.2. Классификация систем, основанных на знаниях
- •2.2.1. Классификация по решаемой задаче
- •2.2.2. Классификация по связи с реальным временем
- •2.2.3. Классификация по типу эвм
- •2.2.4. Классификация по степени интеграции с другими программами
- •2.3. Коллектив разработчиков
- •2.4. Технология проектирования и разработки
- •2.4.1. Проблемы разработки промышленных эс
- •2.4.2. Выбор подходящей проблемы
- •2.4.3. Технология быстрого прототипирования
- •2.4.4. Развитие прототипа до промышленной эс
- •2.4.5. Оценка системы
- •2.4.6. Стыковка системы
- •2.4.7. Поддержка системы
- •Теоретические аспекты инженерии знаний
- •3.1. Поле знаний
- •3.1.1. О языке описания поля знаний
- •3.1.2. Семиотическая модель поля знаний
- •3.1.3. «Пирамида» знаний
- •3.2. Стратегии получения знаний
- •3.3. Теоретические аспекты извлечения знаний
- •3.3.1. Психологический аспект
- •3.3.2. Лингвистический аспект
- •3.3.3. Гносеологический аспект извлечения знаний
- •3.4. Теоретические аспекты структурирования знаний
- •3.4.1. Историческая справка
- •3.4.2. Иерархический подход
- •3.4.3. Традиционные методологии структурирования
- •3.4.4. Объектно-структурный подход (осп)
- •Технологии инженерии знаний
- •4.1. Классификация методов практического извлечения знаний
- •4.2. Коммуникативные методы
- •4.2.1. Пассивные методы
- •Сравнительные характеристики пассивных методов извлечения знаний
- •4.2.2. Активные индивидуальные методы
- •Сравнительные характеристики активных индивидуальных методов извлечения
- •4.2.3. Активные групповые методы
- •4.3. Текстологические методы
- •4.4. Простейшие методы структурирования
- •4.4.1. Алгоритм для «чайников»
- •4.4.2. Специальные методы структурирования
- •4.5. Состояние и перспективы автоматизированного приобретения знаний
- •4.5.1. Эволюция систем приобретения знаний
- •4.5.2. Современное состояние автоматизированных систем приобретения знаний
- •4.6.2. Имитация консультаций
- •4.6.3. Интегрированные среды приобретения знаний
- •4.6.4. Приобретение знаний из текстов
- •4.6.5. Инструментарий прямого приобретения
- •Формы сообщений
- •5.1.1. Семантические пространства и психологическое шкалирование
- •5.1.2. Методы многомерного шкалирования
- •5.1.3. Использование метафор для выявления «скрытых» структур знаний
- •5.2. Метод репертуарных решеток
- •5.2.1. Основные понятия
- •5.2.2. Методы выявления конструктов
- •5.2.3. Анализ репертуарных решеток
- •5.2.4. Автоматизированные методы
- •5.3. Управление знаниями
- •5.3.1. Что такое «управление знаниями»
- •5.3.2. Управление знаниям и корпоративная память
- •5.3.3. Системы omis
- •5.3.4. Особенности разработки omis
- •5.4. Визуальное проектирование баз знаний как инструмент познания
- •5.4.1. От понятийных карт к семантическим сетям
- •5.4.2. База знаний как познавательный инструмент
- •5.5. Проектирование гипермедиа бд и адаптивных обучающих систем
- •5.5.1. Гипертекстовые системы
- •5.5.2. От мультимедиа к гипермедиа
- •5.5.3. На пути к адаптивным обучающим системам
- •6.1.3. Инструментальные средства поддержки разработки систем по
- •6.2. Методологии создания и модели жизненного цикла интеллектуальных систем
- •6.3. Языки программирования для ии и языки представления знаний
- •6.4. Инструментальные пакеты для ии
- •6.5. WorkBench-системы
- •Пример разработки системы, основанной на знаниях
- •7.1. Продукционно-фреймовый япз pilot/2
- •7.1.1. Структура пилот-программ и управление выводом
- •7.1.2. Декларативное представление данных и знаний
- •7.1.3. Процедурные средства языка
- •7.2. Психодиагностика — пример предметной области для построения экспертных систем
- •7.2.1. Особенности предметной области
- •7.2.2. Батарея психодиагностических эс «Ориентир»
- •7.3. Разработка и реализация психодиагностической эс «Cattell»
- •7.3.1. Архитектура системы и ее база знаний
- •7.3.2. Общение с пользователем и опрос испытуемых
- •7.3.3. Вывод портретов и генерация их текстовых представлений
- •7.3.4. Помощь и объяснения в эс «Cattell»
- •8.1.2. Html — язык гипертекстовой разметки Интернет-документов
- •8.1.3. Возможности представления знаний на базе языка html
- •8.2. Онтологии и онтологические системы
- •8.2.1. Основные определения
- •8.2.2. Модели онтологии и онтологической системы
- •8.2.3. Методологии создания и «жизненный цикл» онтологии
- •Фрагмент описания аксиомы
- •8.2.4. Примеры онтологии
- •8.3. Системы и средства представления онтологических знаний
- •8.8.1. Основные подходы
- •8.3.2. Инициатива (ка)2 и инструментарий Ontobroker
- •8.3.3. Проект shoe — спецификация онтологии и инструментарий
- •8.3.4. Другие подходы и тенденции
- •9.1.2. Основные понятия
- •9.2.2. Инструментарий AgentBuilder
- •9.2.3. Система Bee-gent
- •9.3. Информационный поиск в среде Интернет
- •9.3.1. Машины поиска
- •9.3.2. Неспециализированные и специализированные поисковые агенты
- •9.3.3. Системы интеллектуальных поисковых агентов
- •Заключение
- •Литература
- •Содержание
- •Базы знаний интеллектуальных систем
- •196105, Санкт-Петербург, ул. Благодатная, 67.
- •197110, Санкт-Петербург, Чкаловский пр., 15.
3.4.2. Иерархический подход
Проектирование сложных систем и методы структурирования информации традиционно использовали иерархический подход [Месарович, Такахара, 1972] как методологический прием расчленения формально описанной системы на уровни (или блоки, или модули). На высших уровнях иерархии используются наименее детализованные представления, отражающие только самые общие черты и особенности проектируемой системы. На следующих уровнях степень подробности возрастает, при этом система рассматривается не в целом, а отдельными блоками.
В теории САПР такой подход называется блочно-иерархическим (БИП) [Норен-ков, 1983; Петров, 1991]. Одно из преимуществ БИП состоит в том, что сложная задача большой размерности разбивается на последовательно решаемые группы задач малой размерности.
На каждом уровне вводятся свои представления о системе и элементах. Элемент к-го уровня является системой для уровня к-1. Продвижение от уровня к уровню имеет строгую направленность, определяемую стратегией проектирования — сверху вниз или снизу вверх.
Предлагаемый ниже объектно-структурный подход позволяет объединить две, обычно противопоставляемые, стратегии проектирования — нисходящую или дедуктивную STRtd (top-down) с последовательной декомпозицией объектов и процессов сверху вниз и восходящую или индуктивную STRbu (bottom-up) с постепенным обобщением понятий и увеличением степени абстрактности описаний снизу вверх.
Синтез этих стратегий, а также включение возможности итеративных возвратов на предыдущие уровни обобщений позволили создать дуальную концепцию, предоставляющую аналитику широкую палитру возможностей на стадии структурирования знаний как для формирования концептуальной структуры предметной области Sk, так и для функциональной структуры Sf.
Рисунок 3.15. иллюстрирует дуальную концепцию при проектировании Sk для ЭС помощи оператору энергетического блока.
Нисходящая концепция (top-down) декларирует движение от n n + 1, где n — n-й уровень иерархии понятий ПО (предметной области) с последующей детализацией понятий, принадлежащим соответствующим уровням.
STRtd : Pnj P1n+1,…, Pn+1ki,
где n — номер уровня порождающего концепта;
i — номер порождающего концепта;
ki — число порождаемых концептов, сумма всех ki пo i составляет общее число концептов на уровне n+1.
Восходящая концепция (bottom-up) предписывает движение n n-1 с последовательным обобщением понятий.
STRbu : Pnj Pkin,…, Pn-1i,
где n — номер уровня порождающих концептов;
i — номер порождаемого концепта;
ki — число порождающих концептов, сумма всех ki по i составляет общее число концептов на уровне n.
Рис. 3,15. Дуальная стратегия проектирования
Основанием для прекращения агрегирования и дезагрегирования является полное использование словаря терминов, которым пользуется эксперт, при этом число уровней является значимым фактором успешности структурирования (см. «вербальные отчеты» в главе 4).
3.4.3. Традиционные методологии структурирования
Существующие подходы к проектированию сложных систем можно разделить на два больших класса:
• Структурный (системный) подход или анализ, основанный на идее алгоритмической декомпозиции, где каждый модуль системы выполняет один из важнейших этапов общего процесса.
• Объектный подход, связанный с декомпозицией и выделением не процессов, а объектов, при этом каждый объект рассматривается как экземпляр определенного класса.
В структурном анализе [Yourdon, 1989; DeMarco, 1979; Gane & Sarson, 1979] разработано большое число выразительных средств для проектирования, в том числе графических [Буч, 1993]: диаграммы потоков данных (DFD — data-flow diagrams), структурированные словари (тезаурусы), языки спецификации систем, таблицы решений, стрелочные диаграммы «объект—связь» (ERD — entity-relationship diagrams), диаграммы переходов (состояний), деревья целей, блок-схемы алгоритмов (в нотации Насси—Шнейдермана, Гамильтона—Зельдина, Фест-ля и др.), средства управления проектом (PERT-диаграммы, диаграммы Ганта и др.), модели окружения.
Множественность средств и их некоторая избыточность объясняются тем, что каждая предметная область, используя структурный подход как универсальное средство моделирования, вводила свою терминологию, наиболее подходящую для отражения специфики конкретной проблемы. Поскольку инженерия знаний имеет дело с широким классом ПО (это «мягкие» ПО), встает задача разработки достаточно универсального языка структурирования.
Объектный (объектно-ориентированный) подход (ООП), возникший как технология программирования больших программных продуктов, основан на следующих основных элементарных понятиях [Буч, 1992]: объекты, классы как объекты, связанные общностью структуры и свойств, и классификации как средства упорядочения знаний; иерархии с наследованием свойств; инкапсуляции как средства ограничения доступа; методы и полиморфизм для определения функций и отношений.
ООП имеет свою систему условных обозначений и предлагает богатый набор логических и физических моделей для проектирования систем высокой степени сложности, при этом эти системы хорошо структурированы, что порождает легкость их модификации. Впервые принцип ООП установлен в 1979 [Jones, 1979], а затем развит в работах [Shaw, 1984; Peterson, 1987; Буч, 1992].
Широкое распространение объектно-ориентированных языков программирования C++, CLOS, Smalltalk и др. успешно демонстрирует жизнеспособность и перспективность этого подхода.