Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Курманов-22.74.doc
Скачиваний:
4
Добавлен:
11.11.2019
Размер:
1.04 Mб
Скачать
      1. Движение по окружности

Задача 37. (2) Грузило, движущееся на леске по окружности с постоянным тангенциальным ускорением, к концу восьмого оборота имело скорость 6,4 м/с, а после 30 с движения его нормальное ускорение стало 92 м/с2. Найти радиус этой окружности.

Задача 38. (2) Мальчик, катающийся на карусели, движется при остановке карусели по окружности радиусом 9,5 м и проходит путь 8,8 м, имея в начале этой дуги скорость 3,6 м/с, а в конце – 1,4 м/с. Определить полное ускорение мальчика в начале и конце дуги, а также время его движения по этой дуге.

Задача 39. (2) Муха, сидящая на краю лопасти вентилятора, при его включении движется по окружности радиусом 32 см с постоянным тангенциальным ускорением 4,6 см/с2. Через сколько времени после начала движения нормальное ускорение будет вдвое больше тангенциального и чему будет равна линейная скорость мухи в этот момент времени? Сколько оборотов муха сделает за это время?

Задача 40. (2) При открывании двери ручка из состояния покоя движется по окружности радиусом 68 см с постоянным тангенциальным ускорением, равным 0,32 м/с2. Найти зависимость полного ускорения ручки от времени.

Задача 41. (3) Для экономии места въезд на один из высочайших в Японии мостов устроен в виде винтовой линии, обвивающей цилиндр радиусом 65 м. Полотно дороги составляет с горизонтальной плоскостью угол 4,8о. Найти ускорение автомобиля, движущегося по этой дороге с постоянной по модулю скоростью, равной 85 км/ч?

      1. Относительность движения

Задача 42. (2) Два корабля движутся относительно берегов со скоростью 9,00 и 12,0 узлов (1 узел = 0,514 м/с), направленной под углом 30 и 60о к меридиану соответственно. С какой скоростью второй корабль движется относительно первого?

Задача 43. (3) Мальчик, который может плавать со скоростью, в 2,5 раза меньшей скорости течения реки, хочет переплыть эту реку так, чтобы его как можно меньше снесло вниз по течению. Под каким углом к берегу мальчик должен плыть? На какое расстояние его снесет, если ширина реки равна 190 м.

Задача 44. (3) Два тела одновременно начинают двигаться из одной точки в поле силы тяжести с одинаковой скоростью, равной 2,6 м/с. Скорость одного тела направлена под углом π/4, а другого – под углом –π/4 к горизонту. Определить относительную скорость этих тел через 2,9 с после начала их движения.

    1. Движение с переменным ускорением Рассматривая формулу определения ускорения в общем случае

как дифференциальное уравнение с разделяющимися переменными, скорость тела можно найти после интегрирования:

.

Аналогично, рассматривая формулу определения скорости в общем случае

как дифференциальное уравнение с разделяющимися переменными, положение тела в пространстве можно найти после интегрирования:

.

Путь, пройденный телом за промежуток времени (Δt = tt0), можно вычислить как интеграл от модуля скорости:

.

Радиус-вектор, как и любой другой вектор, можно выразить через проекции и орты выбранной системы координат. Формула

;

представляет радиус-вектор в декартовой системе координат.

Система функций

является уравнением траектории в параметрической форме, где параметром является время t. Если движение происходит в одной плоскости, например xOy, то можно получить уравнение траектории в явном виде: , для чего нужно из первых двух функций системы исключить время.

Вопросы для самопроверки и задачи

1) Выведите формулы зависимости скорости и перемещения от времени, если известна зависимость ускорения от времени.

2) Выведите уравнение траектории движения тела, брошенного под углом к горизонту.

3) Запишите радиус-вектор в виде разложения по базису декартовой системы координат.

4) Выведите формулы для нахождения скорости и ускорения тела в декартовой системе координат.