
- •Методы исследования свойств и продуктов питания
- •Методы исследования свойств сырья и продуктов питания
- •ВвЕдение
- •1. Измерения и их классификация
- •1.1. Единицы измерения величин
- •1.2. Системы единиц
- •Кратные и дольные единицы по гост 1052-78
- •2. Статистический анализ измерений
- •2.1. Погрешности приближенных величин
- •2.2. Математическая статистика измерений
- •2.2.1. Параметры точности ряда измерений
- •Интегральная функция Лапласа
- •2.2.2. Анализ результатов экспериментов
- •2.3. Нахождение оптимальных параметров, применение методов планирования экспериментов
- •2.3.1. Схема Зайделя–Гаусса
- •2.3.2. Метод Бокса
- •2.3.3. Нахождение оптимальных параметров с помощью эвм
- •2.3.4. Пример оптимизации процесса приготовления пивного сусла
- •Матрица экспериментальных данных
- •2.3.5. Пример оптимизации использования питательной среды при культивировании пекарских дрожжей
- •Матрица экспериментальных данных
- •2.3.6. Аппроксимация экспериментальных данных
- •3. Отбор проб сырья, полуфабрикатов и пищевых продуктов для проведения исследований
- •3.1. Отбор проб сыпучих продуктов
- •3.1.1. Отбор проб из вагонов
- •3.1.2.Отбор проб из автомашин
- •3.1.3. Отбор проб из танкеров и барж
- •Размеры проб
- •3.1.4. Отбор проб от партии затаренных сыпучих продуктов
- •3.2. Отбор проб сыпучих продуктов при хранении
- •3.2.1. Отбор проб из бунтов
- •3.2.2. Отбор проб из силосов элеваторов
- •3.2.3. Отбор проб в производстве
- •4. Приемы подготовки проб к анализу
- •4.1. Подсушивание (высушивание)
- •4.2. Измельчение
- •4.2.1. Ступки
- •4.2.2. Терочные машины
- •4.2.3. Дисковые мельницы
- •4.2.4. Фрезерные измельчители
- •4.2.5. Комбинированные мельницы
- •4.2.6. Измельчители в жидкой среде
- •4.2.7. Выбор типа измельчительных устройств
- •4.3. Извлечение растворимых компонентов из твердых и пластичных материалов
- •4.3.1. Отжим
- •4.3.2. Извлечение растворителями
- •4.3.3. Специальные приемы извлечения растворимых компонентов
- •4.4. Разделение смеси различных веществ на компоненты
- •4.4.1. Простая перегонка
- •4.4.2. Ректификация
- •4.4.3. Молекулярная перегонка
- •4.4.4. Фракционирование кристаллизацией из растворов
- •5. Измерение кислотности и окислительно-восстановительного потенциала
- •5.1. Определение активной кислотности
- •5.2. Электрометрический метод определения рН
- •5.3. Определение рН при помощи рН-метра марки лпу-01
- •5.4. Колориметрический метод определения рН
- •Характеристика индикаторов для определения рН
- •5.5. Определение титруемой кислотности
- •5.5.1. Титрование с помощью индикаторов
- •5.5.2. Электрометрическое титрование
- •5.6. Определение окислительно-восстановительного потенциала
- •5.6.1. Электрометрический метод
- •5.6.2. Колориметрический метод
- •6. Рефрактометрия
- •6.1. Измерение показателя преломления
- •6.2. Измерения с помощью рефрактометров
- •6.3. Прецизионный рефрактометр
- •6.4. Погружаемый рефрактометр
- •7. Поляриметрия
- •7.1. Устройство поляриметров
- •Удельные вращения сахаров
- •7.2. Приготовление и осветление раствора анализируемого продукта
- •7.3. Методы поляриметрического определения
- •7.4. Определение крахмала методом Эверса
- •8. Колориметрия
- •8.1. Визуальные методы
- •8.2. Фотоэлектрический метод
- •Характеристика светофильтров спектрофотометров фэк-56
- •8.3. Люминесцентный анализ
- •8.3.1. Техника эксперимента и общие приемы анализа
- •8.3.2. Применение люминесцентного анализа в исследовании пищевых продуктов
- •8.4. Цвет и его измерение
- •8.4.1.Общие понятия и приемы измерения цвета
- •8.4.2. Методики определения цветности пищевых продуктов
- •Приготовление серии растворов йода
- •9. Хроматография
- •9.1. Адсорбционная молекулярная хроматография
- •9.2. Распределительная хроматография
- •9.2.1. Хроматография на бумаге
- •9.2.2. Хроматография на колонках
- •9.2.3. Газожидкостная хроматография
- •Характеристика неподвижной фазы
- •10. Электрофорез
- •11. Спектроскопия
- •11.1. Общие понятия и терминология
- •11.2. Эмиссионный спектральный анализ
- •11.3. Анализ элементов методом пламенной фотометрии
- •11.4. Анализ элементов в дуге
- •12. Молекулярный спектральный анализ
- •12.1. Общие сведения об электронных спектрах молекул
- •12.2. Приборы для регистрации электронных спектров поглощения и техника эксперимента
- •12.2.1. Ультрафиолетовая область
- •12.2.2. Видимая область
- •12.2.3. Использование инфракрасных спектров поглощения
- •12.3. Количественный анализ по спектрам поглощения в ультрафиолетовой, видимой и инфракрасной областях спектра
- •12.3.1. Анализ однокомпонентной смеси
- •12.3.2. Анализ двухкомпонентной смеси
- •13. Масс-спектРометрия
- •14. Спектроскопия электронного парамагнитного и ядерного магнитного резонанса
- •14.1. Электронный парамагнитный резонанс
- •14.2. Ядерный магнитный резонанс
- •Контрольные вопросы
- •Список рекомендуемой литературы
- •Содержание
- •Методы исследования свойств сырья и продуктов питания
4.4.4. Фракционирование кристаллизацией из растворов
Фракционирование кристаллизацией из растворов применяется, например, для разделения жирных кислот, их метиловых эфиров и глицеридов на узкие фракции и др. Этот метод имеет важное значение для подготовки к исследованиям веществ в условиях, когда образование вторичных продуктов маловероятно. Например, разделение жирных кислот ведется обычно в растворе сухого ацетона в соотношении 1:10, 1:12 или 1:14. При охлаждении раствора до температуры минус 20…25 °С отделяются насыщенные кислоты от ненасыщенных. При температуре минус 45…50 °С выкристаллизовывается олеиновая кислота, а при минус 60…70 °С – линолевая.
Фракционирование с применением кристаллизации используют при подготовке к исследованиям не только липидов, но и других веществ.
В современных условиях при исследованиях пищевых продуктов широко применяют физико-химические методы анализа. Применение данных методов позволяет существенно повысить аналитическую разрешающую способность и точность измерений.
Непрерывно растущие требования к качеству и количеству аналитической информации требуют освоения и применения новых современных методов и средств измерения состава и свойств материалов и веществ.
5. Измерение кислотности и окислительно-восстановительного потенциала
Известно, что в ряде растворов вещества распадаются (диссоциируют) на ионы. Благодаря этому на электродах, опущенных в такой раствор, называемый электролитом, образуется потенциал, значение которого зависит от природы образующихся ионов и от их концентрации или активности в растворе. Это свойство используется для измерения содержания анализируемых веществ. Наибольшее распространение потенциометрический метод получил для измерения концентрации водородных ионов и окислительно-восстановительного потенциала среды (окислительно-восстановительной способности среды).
Образование и растворение большей части осадков, как, например, сульфидов, карбонатов, фосфатов, зависит от концентрации водородных ионов.
Каждый фермент проявляет максимальное действие при определенной для него кислотности среды. Активность ферментов и характер процессов зависят также от окислительно-восстановительного потенциала (ОВ-потенциала). Регулируя степень кислотности и уровень ОВ-потенциала, можно управлять биохимическими процессами, направлять их по тому пути, который обеспечивает наибольший выход продукта и наилучшее его качество.
Общая кислотность среды характеризует содержание в растворе веществ, вступающих в реакцию с сильными щелочами и определяется титрованием. Данный показатель еще называют титруемой кислотностью.
Титруемая кислотность обусловлена присутствием в среде органических кислот и кислых солей фосфатов и карбонатов. Органические кислоты являются слабыми кислотами и при растворении диссоциируют не полностью. Поэтому кислотность, определенная как концентрация водородных ионов, и титруемая кислотность будут разные.
Для ферментативных реакций решающее значение имеет не общая кислотность, а концентрация активного компонента, вступающего в реакцию, т. е. иона водорода. Поэтому концентрацию водородных ионов в растворе называют активной или истинной кислотностью. Ее нельзя определить титрованием, так как по мере связывания щелочью ионов водорода с образованием молекулы нейтральной воды все новые молекулы кислот диссоциируют на ионы, и это будет продолжаться до тех пор, пока вся кислота не будет диссоциирована и связана щелочью. В связи с этим для определения активной кислотности необходимы методы, позволяющие установить только концентрацию в растворе ионов водорода, как активного компонента раствора.
Окислительно-восстановительным потенциалом называется электродвижущая сила (ЭДС), возникающая при переносе электронов в растворе, к которому приложено напряжение.