Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Трансформаторы.doc
Скачиваний:
21
Добавлен:
11.11.2019
Размер:
7.99 Mб
Скачать

При коротком замыкании

Согласно уравнениям напряжений и токов, построим векторную диаграмму трансформатора в режиме короткого замыкания (рис. 2.22).

Рис. 2.22. Векторная диаграмма

Трансформатора при коротком замыкании

Для режима короткого замыкания обычно строят треугольник короткого замыкания (рис. 2.22).

Стороны треугольника соответствуют:

, (2.63)

где – активная, реактивная составляющие напряжения короткого замыкания, и полное напряжение короткого замыкания соответственно при токе короткого замыкания .

Активная, реактивная составляющие напряжения короткого замыкания, и напряжение короткого замыкания, выраженные в процентах (при токе короткого замыкания ):

(2.64)

Номинальные величины активной, реактивной составляющих напряжения короткого замыкания, и номинальное напряжение короткого замыкания, выраженные в процентах:

(2.65)

Можно выразить номинальные величины активной, реактивной составляющих напряжения короткого замыкания, и номинальное напряжение короткого замыкания в относительных единицах:

(2.66)

Сопротивления короткого замыкания (или параметры короткого замыкания) также выражают в процентах или относительных единицах. Так, полное сопротивление короткого замыкания:

. (2.67)

Аналогично, активное и реактивное составляющие сопротивления короткого замыкания в относительных единицах:

(2.68)

Так как обмотки в режиме короткого замыкания нагреваются, то активное сопротивление короткого замыкания и все величины, с ним связанные, приводят к температуре 75:

, (2.69)

где  – температурный коэффициент, равный для меди и алюминия: =0,004;

1 – температура окружающей среды.

Тогда полное сопротивление схемы замещения, приведённое к температуре 75:

(2.70)

Коэффициент мощности при коротком замыкании:

. (2.71)

Активная составляющая напряжения короткого замыкания:

(2.72)

При к.з. ЭДС и поток составляют всего несколько процентов от их значений при номинальном напряжении, то магнитными потерями можно пренебречь и считать, что потребляемая трансформатором мощность при коротком замыкании идёт полностью на покрытие электрических потерь в обмотках:

. (2.73)

Потери короткого замыкания (или мощность короткого замыкания) также приводят к температуре 75:

. (2.74)

1.7Изменение вторичного напряжения трансформатора Изменение вторичного напряжения

При изменении нагрузки трансформатора происходит и изменение его вторичного напряжения. Изменением вторичного напряжения называется алгебраическая разность значений вторичного напряжения при х.х. U20 и нагрузке U2 в процентах от напряжения при х.х. U20:

. (2.75)

А так как при х.х. практически отсутствуют падения напряжения в обмотках, то и при номинальном значении:

. (2.76)

Рис. 2.23. Упрощённая векторная диаграмма

На практике изменение вторичного напряжения выражают через составляющие напряжения короткого замыкания. Для определения изменения вторичного напряжения воспользуемся упрощённой векторной диаграммой (рис. 2.23), построенной согласно упрощённой схеме замещения (рис. 2.18).

Из диаграммы следует, что ввиду малости угла можно приближённо за модуль вектора принять его проекцию на направление вектора , т.е. отрезок ОА, тогда

, (2.75)

или через проекции падений напряжения получим:

. (2.76)

Изменение вторичного напряжения в относительных единицах:

. (2.77)

Изменение вторичного напряжения в процентах:

. (2.78)

Данное выражение позволяет определить изменение вторичного напряжения от режима холостого хода только до номинальной нагрузки, т.е. при . При необходимости расчёта для любой нагрузки введём коэффициент нагрузки:

. (2.79)

Тогда получим

. (2.80)

Из данного выражения следует, что, при заданном значении коэффициента нагрузки, величина зависит от величины угла , т.е. от типа нагрузки. При чисто активной нагрузке ( = 0) величина > 0 невелика. При активно-индуктивной – возрастает (т.е. вторичное напряжение при увеличении нагрузки уменьшается, что говорит о размагничивающем действии нагрузки), а при активно-емкостной – даже может быть < 0 (т.е. вторичное напряжение при увеличении нагрузки увеличивается, что говорит о подмагничивающем действии нагрузки).

Зависимость = f(cos ) приведена на рис. 2.24.

Рис. 2.24. Зависимость = f(cos )