
- •Раздел 2. Трансформаторы
- •1.1Назначение и области применения трансформаторов
- •1.2Принцип действия трансформатора
- •Двухобмоточного трансформатора
- •1.3Конструктивное устройство 1-фазного трансформатора
- •Конструкции магнитопроводов
- •Основные типы 1-фазных трансформаторов: а) стержневого типа; б) броневого типа
- •Р ис. 2.4. Поперечное сечение стержня (а) и ярма (б)
- •На рисунке: 1 – стержень; 2 – обмотка; 3 – изоляционный цилиндр;
- •А) цилиндрическая однослойная; б) цилиндрическая многослойная; в) катушечная многослойная; г)винтовая.
- •1.4Режим холостого хода 1–фазного трансформатора
- •Напряжения, эдс и магнитного потока
- •Ток холостого хода идеального трансформатора
- •Холостой ход реального трансформатора
- •Режим холостого хода
- •Трансформатора, режим холостого хода
- •1.5 Работа 1-фазного трансформатора при нагрузке
- •Уравнения напряжений трансформатора
- •Приведение числа витков вторичной обмотки к числу витков первичной обмотки
- •Уравнения токов и напряжений приведённого трансформатора
- •Векторная диаграмма приведённого трансформатора
- •1.6Режим короткого замыкания трансформатора
- •При коротком замыкании
- •Трансформатора при коротком замыкании
- •1.7Изменение вторичного напряжения трансформатора Изменение вторичного напряжения
- •Внешняя характеристика трансформатора
- •2.8. 2.8. Потери и кпд трансформатора
- •1.8Трёхфазные трансформаторы Магнитные системы трёхфазных трансформаторов
- •Векторная диаграмма напряжений
- •Векторная диаграмма напряжений
- •Группы соединения обмоток
- •Особенности режима холостого хода трёхфазных трансформаторов или явления, возникающие при намагничивании трёхфазных трансформаторов
- •Гармоник тока холостого хода
- •Холостого хода
- •2.10. Несимметричная нагрузка трёхфазных трансформаторов
- •Метод симметричных составляющих
- •Сопротивление трансформатора для токов прямой и обратной последовательности
- •Обратной последовательности
- •Токи и потоки нулевой последовательности
- •Последовательности
- •Схемы замещения трансформатора для токов нулевой последовательности
- •Последовательности
- •Нулевой последовательности
- •Последовательности
- •Нулевой последовательности
- •Для токов нулевой последовательности
- •Нулевой последовательности
- •Для токов нулевой последовательности
- •Несимметричный режим работы при наличии токов нулевой последовательности
- •Несимметричные режимы работы при отсутствии токов нулевой последовательности
- •1.9Параллельная работа трансформаторов
- •1.10Специальные типы трансформаторов
- •Трансформатора
- •Трёхобмоточные трансформаторы
Р ис. 2.4. Поперечное сечение стержня (а) и ярма (б)
сечение стержней. Это уменьшает индукцию в стали ярма и потери мощности в ней.
Обмотки трансформаторов
Обмотки трансформаторов должны обладать:
Механической прочностью;
Электрической прочностью;
Технологичностью;
Нагревостойкостью;
Экономичностью.
Основными величинами, определяющими конструкцию обмоток трансформатора, являются номинальные значения тока и напряжения. Обмотки выполняются из медного или алюминиевого провода круглого сечения (s = 0,02…10 мм2) или прямоугольного (s = 6…60 мм2).
Плотность тока в медных обмотках должна находиться в пределах:
в трансформаторах с масляным охлаждением – j = 2,5…4,5 А/мм2;
в сухих трансформаторах – j = 1,8…2,5 А/мм2.
В обмотках, выполненных из алюминиевого провода, плотность тока на 40% меньше. В связи с этим, поперечное сечение обмотки из алюминия будет больше, чем из меди, при одной величине тока, а, следовательно, габариты и масса трансформатора с алюминиевыми обмотками больше, чем с медными.
В современных трансформаторах первичную и вторичную обмотки не размещают на различных стержнях магнитопровода, а стремятся расположить для лучшей магнитной связи ближе друг к другу. При этом на каждом стержне размещают обе обмотки: либо концентрически одну поверх другой (рис. 2.5, а) – концентрические обмотки, либо в виде нескольких дисковых катушек, чередующихся по высоте стержня (рис. 2.5, б) – дисковые чередующиеся обмотки. Эти обмотки имеют меньшее магнитное рассеяние, однако изоляции их сложнее. В силовых трансформаторах применят в основном концентрические обмотки, причём ближе к стержням располагают обмотку НН, требующую меньшей изоляции относительно стержня, а снаружи – обмотку ВН.
Обмотки трансформаторов делятся на:
Цилиндрические 1, 2-х слойные, выполненные из провода прямоугольного сечения (рис. 2.5, а).
Цилиндрические многослойные, выполненные из провода круглого или прямоугольного сечения (рис. 2.5, б). Применяются в качестве обмотки ВН или НН, просты в производстве, но механическая прочность невелика. Применяют при мощности на 1 стержень до 200 кВА.
4 – радиальный вентиляционный канал
Рис. 2.5. Обмотки трансформаторов:
радиальный вентиляционный канал
На рисунке: 1 – стержень; 2 – обмотка; 3 – изоляционный цилиндр;
А) цилиндрическая однослойная; б) цилиндрическая многослойная; в) катушечная многослойная; г)винтовая.
Катушечные многослойные (рис. 2.5, б). Состоят из ряда последовательно-соединённых катушек, намотанных из круглого провода. Используются в качестве обмотки ВН при напряжении до 35 кВ, при мощности на 1 стержень до 350 кВА.
Винтовые (рис. 2.5, г). Выполняются из нескольких прямоугольных проводников, которые укладываются по винтовой линии. Для равномерного распределения тока между параллельными проводниками применяется транспозиция проводников, т.е. перекладка проводников относительно стержня. Используются в качестве обмотки НН при токах свыше 300 А, при напряжении от 230 В до 15 кВ, мощность на 1 стержень – от 45 до до 350 кВА. Обладают достаточной механической прочностью.
Непрерывные катушечные. Широко используются в качестве обмоток ВН и НН ввиду большой механической прочности и надёжности. Выполняется из нескольких десятков дисковых катушек, намотанных по спираль и соединённых без пайки.