
- •Раздел 1. Машины постоянного тока
- •5.1Принцип действия машины постоянного тока
- •5.2Основные свойства эмпт в режиме генератора и двигателя
- •5.3Конструктивное исполнение эмпт
- •5.4.1Расчёт магнитной цепи эмпт
- •5.4.2Магнитная характеристика машины
- •5.5 Якорные обмотки машины постоянного тока
- •5.5.1Общие замечания
- •5.5.2Простая петлевая обмотка.
- •5.5.3Уравнительные соединения
- •5.5.4Простые волновые обмотки
- •5.5.5Развёрнутая схема простой волновой обмотки (пример)
- •5.5.6Сложные обмотки Сложная петлевая обмотка
- •Сложная волновая обмотка
- •Комбинированные («лягушачьи») обмотки
- •5.6Работа эмпт в режиме холостого хода. Эдс обмотки якоря
- •5.7Напряжение между коллекторными пластинами
- •Потенциальная кривая коллектора
- •5.8Работа эмпт при нагрузке. Электромагнитный момент и электромагнитная мощность эмпт
- •5.8.1 Режим холостого хода
- •5.8.2Работа эмпт при отсутсРабочий режим работы эмпт
- •А) результирующее магнитное поле мпт; б) продольное поле реакции якоря
- •5.8.3 Сдвиг щёток с геометрической нейтрали на 900 по направлению вращения в генераторе (или против вращения – в двигателе)
- •5.8.4 Сдвиг щёток с геометрической нейтрали на 900 против направления вращения в генераторе (или по направлению вращения – в двигателе)
- •5.9Влияние поперечной реакции якоря на магнитное поле эмпт
- •5.10Эдс обмотки якоря при нагрузке
- •5.11Напряжение между коллекторными пластинами при нагрузке
- •5.12Компенсационная обмотка
- •Компенсационной обмотки.
- •5.13Коммутация эмпт
- •5.14Искрение на коллекторе
- •5.15Процесс коммутации
- •5.16Способы улучшения коммутации
- •Добавочных полюсов
- •1.17. Генераторы постоянного тока
- •Генератора независимого возбуждения
- •Постоянного тока независимого возбуждения
- •1.18. Генераторы независимого возбуждения
- •Независимого возбуждения
- •Р ис. 1.53. Построение регулировочной характеристики генератора независимого возбуждения
- •Р ис. 1.54. Нагрузочная характеристика независимого возбуждения
- •1.19. Генераторы параллельного возбуждения.
- •Р ис. 1.56. Характеристика холостого хода
- •Генератора параллельного возбуждения
- •От оборотов генератора.
- •Р ис. 1.59. Внешняя характеристика генератора параллельного (1) и независимого (2) возбуждения
- •Генератора параллельного возбуждения
- •1.20. Генераторы последовательного возбуждения.
- •Возбуждения
- •Р ис. 1.62. Приближенное построение внешней характеристики генератора последовательного возбуждения
- •Р ис. 1.67. Параллельная работа генераторов в режиме внешних характеристик
- •1.21. Двигатели постоянного тока.
- •Двигателей постоянного тока (дпт)
- •Параллельного возбуждения
- •1.22. Уравнения вращающих моментов
- •С помощью пускового реостата (а) и пусковых сопротивлений (б)
- •От времени при пуске двигателя
- •И механических характеристик двигателя параллельного возбуждения
- •1.22.1. Условия устойчивости работы двигателя
- •5.16.1Регулирование частоты вращения двигателя параллельного возбуждения
- •А) схема регулирования частоты вращения двигателя параллельного возбуждения; б) механические характеристики
- •Параллельного возбуждения при разных потоках возбуждения
- •Двигателя параллельного возбуждения при разных напряжениях
- •Для регулирования частоты вращения двигателя независимого возбуждения
- •1.22.3. Рабочие характеристики двигателя параллельного возбуждения
- •Параллельного возбуждения
- •1.23. Двигатели последовательного возбуждения.
- •Последовательного возбуждения
- •Двигателя последовательного возбуждения
- •1.23.1. Регулирование двигателей последовательного в возбуждения
- •Регулирование скорости путем шунтирования якоря
- •Регулирование скорости включением сопротивления в цепь якоря
- •Регулирование скорости изменением напряжения
- •Двигателя последовательного возбуждения при разных способах регулирования частоты вращения (в относительных единицах)
- •1.28. Потери и кпд эмпт.
Раздел 1. Машины постоянного тока
5.1Принцип действия машины постоянного тока
Электрическая машина – машина, служащая для преобразования: – механической энергии в электрическую энергию; или – электрической энергии в механическую энергию; или – электрической энергии в электрическую энергию, отличающуюся по напряжению, частоте и другим параметрам. Действие электрических машин основано на использовании явления электромагнитной индукции и законов, определяющих взаимодействие электрических токов и магнитных полей. |
|
|
|
Электромагнитная индукция – это явление возникновения электродвижущей силы (ЭДС) в проводнике, находящемся в изменяющемся магнитном поле или благодаря движению проводника относительно неподвижного магнитного поля. Электромагнитная индукция была открыта Майклом Фарадеем в 1831 году. Он обнаружил, что электродвижущая сила, возникающая в замкнутом проводнике пропорциональна скорости изменения магнитного потока через поверхность, ограниченную этим контуром. Величина ЭДС не зависит от того, что является причиной изменения потока — изменение самого магнитного поля или движение проводника в неоднородном магнитном поле. Электрический ток вызванный этой ЭДС называется индукционным током.
Согласно закону электромагнитной индукции Фарадея (в системе СИ):
.
Рассмотрим принцип действия электрической машины постоянного тока (ЭМПТ) на простейшем примере: рамка в магнитном поле (рис. 1.1).
Магнитное поле в
этом случае создаётся индуктором, в
данном случае − два постоянных магнита.
Другая конструктивная часть, в которой
наводится ЭДС и
протекает
ток − это якорь с обмоткой якоря.
Якорь с обмоткой − вращающаяся часть ЭМПТ − ротор,
Индуктор − неподвижная часть ЭМПТ − статор.
В данном случае, обмотка якоря состоит из одного витка. Концы витка присоединены к изолированным от вала медным пластинам коллектора. На коллектор налегают две щётки, с помощью которых обмотка якоря соединяется с внешней цепью − нагрузкой. Чтобы данная ЭМ работала в режиме генератора, надо подвести к ней механическую мощность, т е. привести якорь во вращение с частотой n приводным двигателем. Тогда, согласно закону электромагнитной индукции (закону Фарадея), при вращении якоря проводники рамки пересекают магнитные силовые линии поля и в каждом проводнике (ав, cd) будет наводиться ЭДС:
(1.1)
где
− магнитная
индукция;
−
активная длина
проводника;
− линейная скорость
движения проводника.
Напомним, что ЭДС - характеристика источника энергии в электрической цепи. Электродвижущая сила измеряется отношением работы сторонних сил по перемещению заряда вдоль контура к величине этого заряда. ЭДС измеряется в вольтах. При изучении электрических машин полезно пользоваться правилами правой и левой руки. Правило правой руки помогает определить направление индукционного тока в проводнике, движущемся в магнитном поле. Если ладонь правой руки расположить так, чтобы в нее входили силовые линии магнитного поля, а отогнутый большой палец направить по движению проводника, то четыре 4 вытянутых пальца укажут направление индукционного тока. Правило левой руки помогает определить направление силы, которая действует на находящийся в магнитном поле проводник с током. Если ладонь левой руки расположить так, чтобы вытянутые пальцы были направлены по току, а силовые линии магнитного поля входили в ладонь, то отставленный большой палец укажет направление силы, действующей на проводник.
При этом направление вектора ЭДС проводника будет определяться по правилу правой руки.
По контуру витка ЭДС двух проводников складываются, и тогда полная ЭДС якоря (ЭДС на щётках):
(1.2)
Если включить во внешнюю цепь нагрузку, то по внешней цепи и рамке потечёт ток якоря iа, при этом
(1.3)
Щётка, от которой ток оттекает во внешнюю цепь, считается положительной.
На проводник с током, находящийся в магнитном поле действует электромагнитная сила (сила Ампера), с которой магнитное поле действует на проводник с током
,
(1.4)
где
– магнитная индукция,
– ток в проводнике,
– угол между вектором магнитной индукции
и направлением тока,
– длина проводника.
При
,
что имеет место в электрических машинах
.
Магни́тная инду́кция – векторная величина, показывающая, с какой силой магнитное поле действует на движущийся заряд. Является силовой характеристикой поля, аналогичной вектору напряженности электрического поля. За положительное направление вектора принимается направление от северного полюса N к южному полюсу S магнитной стрелки. В системе СГС магнитная.
индукция поля измеряется в гауссах (Гс), в системе СИ – в теслах (Тл), 1 Тл = 104 Гс.
Направление электромагнитной силы определяется по правилу левой руки.
Электромагнитная сила создаёт электромагнитный момент:
,
(1.5)
где
−
диаметр якоря.
Отметим также, что
направлен противоположно вращающему
моменту
,
т.е. является в режиме генератора
тормозным.
ЭДС проводника
является переменной функцией времени,
т.к. при вращении якоря проводники
обмотки якоря попеременно проходят под
южным и северным полюсом, в результате
чего направление ЭДС проводника меняется.
По форме кривая ЭДС проводника:
повторяет кривую распределения магнитной
индукции в зазоре:
,
и меняется по трапецеидальному закону
(рис. 1.2).
На рис. 1.2 Т − время полного изменения ЭДС, т.е. период ЭДС. Число периодов в 1 сек. называется частотой ЭДС f. Понятно, что если число полюсов 2р=2, тогда f = n [об/сек]. Если число полюсов 2р, то частота ЭДС:
,
(1.6)
где n − частота вращения, об/мин.
Таким образом:
!
Это достигается с помощью коллектора, т.е. в нашем случае − двух медных пластин.
Принцип действия
коллектора: при повороте якоря на
коллектор, который расположен на одном
валу с якорем, также поворачивается на
,
и при изменении направления
происходит смена коллекторных пластин
под щётками. Из-за этого под верхней
щёткой всегда будет находится пластина,
соединённая с проводником, расположенным
под верхним (северным) полюсом, а под
нижней − пластина, соединённая с
проводником, расположенным под нижним
(южным) полюсом. В результате полярность
щёток и направление тока во внешней
цепи − неизменно.
Таким образом, коллектор является механическим выпрямителем в генераторном режиме (механическим инвертором − в двигательном), и создаёт скользящий контакт.