
- •Общая физика
- •§ 1. Кинематика материальной точки и поступательного движения твердого тела
- •II закон Ньютона. Ускорение, приобретаемое материальной точкой (телом) пропорционально вызывающей его силе, совпадает с нею по направлению и обратно пропорционально массе материальной точки (тела).
- •III закон Ньютона. Силы, с которыми действуют друг на друга тела, равны по модулю и противоположены по направлению.
- •2.2. Закон сохранения импульса (количества движения)
- •2.3. Энергия, работа, мощность
- •2.4. Закон сохранения и превращения энергии
- •2.5 Тяготение
- •2.6. Механика вращательного движения
- •Момент инерции, момент силы, момент импульса.
- •И вращательном движениях
- •2.7.Колебания и волны Механические колебания, математический маятник
- •2.8. Границы применимости законов классической механики и элементы специальной теории относительности
- •§ 1. Параметры термодинамических систем (параметры состояния)
- •§ 2. Законы идеальных газов
- •§ 3. Уравнение состояния реальных газов
- •Уравнение ван-дер-ваальса или уравнение состояния реальных газов
- •§4. Основы термодинамики.
- •Кинетической теории идеальных газов
- •Наиболее вероятная (максимальная)
- •§1. Электрическое поле
- •§1.1. Силовые характеристики электрического поля
- •§1. 2. Энергетические характеристики электрического поля
- •§1.3. Диполь
- •§1.4. Проводники в электрическом поле
- •§1.5. Диэлектрики в электрическом поле
- •§1.6. Электроемкость
- •§1.7. Конденсаторы
- •§1.8. Энергия электростатического поля
- •§2.1. Электродвижущая сила (эдс) (e ) источника
- •§2.2. Закон Ома для постоянного тока
- •§2.3. Закон Джоуля-Ленца
- •§2.4. Правила Кирхгофа (1847г.)
- •§2.5. Зонная теория
- •Гл. 3 электромагнетизм
- •§3.1. Характеристики магнитного поля
- •И мп на оси кругового тока.
- •§3.2. Вещество в магнитном поле
- •§3.3. Рамка с током в магнитном поле (Применения закона Ампера)
- •§3.4. Сила Лоренца
- •§3.5. Движение заряженных частиц в электрическом поле
- •§3.6. Движение заряженных частиц в магнитном поле
- •§ 3.7. Электромагнитная индукция: Закон Фарадея − Ленца
- •§3.8. Закон Ома для полной цепи
- •§3.9. Индуктивность, самоиндукция, взаимная индукция
- •1 Гн индуктивность такого контура, магнитный поток самоиндукции которого при токе 1 а равен 1 Вб.
- •§3.10. Энергия магнитного поля
- •§4.1. Полное сопротивление цепи при переменном токе.
- •§4.2. Резонанс
- •Шкала электромагнитных волн
- •§1.1. Поглощение света (Закон бугера)
- •§1.2. Законы геометрической оптики
- •§1.3. Формула призмы
- •§1.4. Линзы
- •Характер изображения собирающей линзы
- •§1.5. Аберрации или погрешности оптических систем
- •§2. Волновая оптика
- •§2.1. Интерференция света
- •§2.2. Дифракция света
- •РешеткаУсловияУсловия§2.3. Дисперсия света и спектральный анализ
- •§ 2.4. Поляризация света
- •Объяснение законов отражения и преломления с точки зрения волновой теории
- •§1. Тепловое излучение
- •Закон Стефана - Больцмана. Полная (по всему спектру) излучательная способность абсолютного черного тела прямо пропорциональна четвертой степени его абсолютной (термодинамической) температуре т:
- •§ 2. Фотоэффект
- •§ 3. Строение вещества
- •§ 3.1. Модели атома Резерфорда
- •§ 3.2. Постулаты Бора
- •§ 3.3. Правила отбора Паули, квантовые числа и таблица Менделеева
- •Периодическая система элементов Менделеева и распределение электронов по подоболочкам
- •§ 3.4. Радиоактивность
- •Закон радиоактивного распада
- •§ 3.5. Физика атомного ядра
- •§ 3.6. Элементарные и фундаментальные частицы
- •Классификация частиц
- •§3.7. Волновые свойства микрочастиц
- •§3.8. Соотношение неопределенности Гейзенберга
- •§3.9. Основы квантовой механики.
- •Основная литература
- •Вспомогательная литература
- •Контрольные вопросы по физике Трофимова т.И., Курс физики, «Высшая школа»,2000г.
- •Применение первого начала термодинамики к термодинамическим изопроцессам
- •Приложение к теме «Оптика» основные фотометрические величины и их единицы
§3.8. Соотношение неопределенности Гейзенберга
Из корпускулярно – волнового дуализма следует, что применение к объектам микромира понятий классической механики (физики) не всегда правомерно и должно иметь некоторые ограничение. В классической механике всякая частица движется по определенной траектории, так что в любой момент времени точно фиксированы ее координаты и импульс. Микрочастицы из-за наличия у них волновых свойств существенно отличаются от классических частиц. Одно из основных различий заключается в том, что нельзя говорить о движении микрочастицы по определенной траектории и неправомерно говорить об одновременных точных значениях ее координаты и импульса: понятие «длина волны в данной точке» лишено физического смысла. Поскольку импульс выражается через длину волны, то отсюда следует, что микрочастица с определенным импульсом имеет полностью неопределенную координату. И наоборот, если микрочастица находится в состоянии с точным значением координаты, то ее импульс является полностью неопределенным.
В.Гейзенберг, учитывая волновые свойства микрочастиц и связанные с волновыми свойствами ограничения в их поведении, пришел в 1927 г. к выводу, что объект микромира невозможно одновременно с любой наперед заданной точностью характеризовать и координатой и импульсом. Согласно соотношению неопределенностей Гейзенберга, микрочастица не может иметь одновременно и определенную координату (x, y, z), и определенную соответствующую проекцию импульса (px, py, pz), причем неопределенности этих величин удовлетворяют условиям
Δx.Δpx ≥ h, Δy. Δpy ≥ h, Δz.Δpz ≥ h,
т.е. произведение неопределенностей координаты и соответствующей ей проекции импульса не может быть меньше величины порядка h (h - постоянная Планка).
Для микрочастиц не существуют состояний, в которых ее координаты и импульс одновременно имели бы точные значения.
Соотношение неопределенности является квантовым ограничением применимости классической механики к микрообъектам.
Принцип неопределенности, отражая физическую реальность, доказывает вероятностный характер физических характеристик микрочастиц: ее координат, импульса, энергии и др..
Примеряя соотношение неопределенности к электрону в атоме водорода, получаем, что его неопределенность скорости вращения вокруг ядра в несколько раз больше самой скорости, т.е. в данном случае нельзя говорить о движении электрона в атоме по определенной траектории, иными словами, для описания движения электрона в атоме нельзя пользоваться законами классической физики. Поэтому понятие орбиты применяется к электрону только в боровском приближении, которое, кстати, в некоторых случаях давал вполне удовлетворительные результаты.
В квантовой механике представление о точных значениях координаты, мгновенной скорости микрочастицы, ее траектории (в классическом понимании) теряет смысл. Однако, законы сохранения импульса, энергии в квантовой механике выполняются строго.
В квантовой теории рассматриваются также соотношение неопределенности для энергии E и времени t, т.е. неопределенности этих величин удовлетворяют условию ΔE . Δt ≥ h, где ΔE - неопределенность энергии некоторого состояния системы, а Δt - промежуток времени, в течение которого оно существует.
Это приводит к «размытию» спектральных линий, которое экспериментально наблюдается и при помощи которого можно оценить порядок времени существования атома в возбужденном состоянии. Естественно, энергетическая «размытость» метастабильных уравнений гораздо меньше, т.к. время жизни, и соответственно Δt на этих уровнях гораздо больше.