
- •Общая физика
- •§ 1. Кинематика материальной точки и поступательного движения твердого тела
- •II закон Ньютона. Ускорение, приобретаемое материальной точкой (телом) пропорционально вызывающей его силе, совпадает с нею по направлению и обратно пропорционально массе материальной точки (тела).
- •III закон Ньютона. Силы, с которыми действуют друг на друга тела, равны по модулю и противоположены по направлению.
- •2.2. Закон сохранения импульса (количества движения)
- •2.3. Энергия, работа, мощность
- •2.4. Закон сохранения и превращения энергии
- •2.5 Тяготение
- •2.6. Механика вращательного движения
- •Момент инерции, момент силы, момент импульса.
- •И вращательном движениях
- •2.7.Колебания и волны Механические колебания, математический маятник
- •2.8. Границы применимости законов классической механики и элементы специальной теории относительности
- •§ 1. Параметры термодинамических систем (параметры состояния)
- •§ 2. Законы идеальных газов
- •§ 3. Уравнение состояния реальных газов
- •Уравнение ван-дер-ваальса или уравнение состояния реальных газов
- •§4. Основы термодинамики.
- •Кинетической теории идеальных газов
- •Наиболее вероятная (максимальная)
- •§1. Электрическое поле
- •§1.1. Силовые характеристики электрического поля
- •§1. 2. Энергетические характеристики электрического поля
- •§1.3. Диполь
- •§1.4. Проводники в электрическом поле
- •§1.5. Диэлектрики в электрическом поле
- •§1.6. Электроемкость
- •§1.7. Конденсаторы
- •§1.8. Энергия электростатического поля
- •§2.1. Электродвижущая сила (эдс) (e ) источника
- •§2.2. Закон Ома для постоянного тока
- •§2.3. Закон Джоуля-Ленца
- •§2.4. Правила Кирхгофа (1847г.)
- •§2.5. Зонная теория
- •Гл. 3 электромагнетизм
- •§3.1. Характеристики магнитного поля
- •И мп на оси кругового тока.
- •§3.2. Вещество в магнитном поле
- •§3.3. Рамка с током в магнитном поле (Применения закона Ампера)
- •§3.4. Сила Лоренца
- •§3.5. Движение заряженных частиц в электрическом поле
- •§3.6. Движение заряженных частиц в магнитном поле
- •§ 3.7. Электромагнитная индукция: Закон Фарадея − Ленца
- •§3.8. Закон Ома для полной цепи
- •§3.9. Индуктивность, самоиндукция, взаимная индукция
- •1 Гн индуктивность такого контура, магнитный поток самоиндукции которого при токе 1 а равен 1 Вб.
- •§3.10. Энергия магнитного поля
- •§4.1. Полное сопротивление цепи при переменном токе.
- •§4.2. Резонанс
- •Шкала электромагнитных волн
- •§1.1. Поглощение света (Закон бугера)
- •§1.2. Законы геометрической оптики
- •§1.3. Формула призмы
- •§1.4. Линзы
- •Характер изображения собирающей линзы
- •§1.5. Аберрации или погрешности оптических систем
- •§2. Волновая оптика
- •§2.1. Интерференция света
- •§2.2. Дифракция света
- •РешеткаУсловияУсловия§2.3. Дисперсия света и спектральный анализ
- •§ 2.4. Поляризация света
- •Объяснение законов отражения и преломления с точки зрения волновой теории
- •§1. Тепловое излучение
- •Закон Стефана - Больцмана. Полная (по всему спектру) излучательная способность абсолютного черного тела прямо пропорциональна четвертой степени его абсолютной (термодинамической) температуре т:
- •§ 2. Фотоэффект
- •§ 3. Строение вещества
- •§ 3.1. Модели атома Резерфорда
- •§ 3.2. Постулаты Бора
- •§ 3.3. Правила отбора Паули, квантовые числа и таблица Менделеева
- •Периодическая система элементов Менделеева и распределение электронов по подоболочкам
- •§ 3.4. Радиоактивность
- •Закон радиоактивного распада
- •§ 3.5. Физика атомного ядра
- •§ 3.6. Элементарные и фундаментальные частицы
- •Классификация частиц
- •§3.7. Волновые свойства микрочастиц
- •§3.8. Соотношение неопределенности Гейзенберга
- •§3.9. Основы квантовой механики.
- •Основная литература
- •Вспомогательная литература
- •Контрольные вопросы по физике Трофимова т.И., Курс физики, «Высшая школа»,2000г.
- •Применение первого начала термодинамики к термодинамическим изопроцессам
- •Приложение к теме «Оптика» основные фотометрические величины и их единицы
§1.3. Формула призмы
Призмой называется прозрачное тело, с двух сторон ограниченное плоскостями, которые составляют какой-то угол между собой (преломляющий угол призмы – θ, см. рисунок).
После двукратного преломления (на левой и на правой гранях призмы) луч света отклоняется от первоначального направления на угол δ, называемый углом отклонения.
Угол отклонения δ зависит от преломляющего угла θ и показателя преломления n призмы. Эта зависимость легко устанавливается для призмы с малым преломляющим углом (тонкая призма) в случаях малого угла падения α.
δ ≈ (n-1)·θ
(Вывести самостоятельно, учитывая, что при малых значениях θ и α, также малы углы γ, α1 и γ1, поэтому из закона преломления sinα=n.sinγ и n . sinα1=sinγ1 можно перейти к выражениям α=nγ и nα1= γ1, а θ=γ+α1, δ=(α-γ)+(γ1- α1) ).
Минимальный угол отклонения получается в случае симметричного хода луча (т.е. когда α=γ1 и луч внутри призмы параллелен основанию призмы). Обратите внимание, что при прохождении через призму луч всегда отклоняется в сторону основании.
§1.4. Линзы
Линзы – это прозрачные тела, ограниченные с двух сторон криволинейными (обычно сферическими) поверхностями, преломляющими световые лучи и способные формировать оптические изображения предметов. В частном случае одна из поверхностей может быть плоской
По внешней форме линзы делятся на двояковыпуклые, плосковыпуклые, вогнуто-выпуклые, двояковогнутые, плосковогнутые и выпукло-вогнутые (на рисунке они изображены слева направо). По оптическим свойствам линзы делятся на собирающие (положительные) и рассеивающие (отрицательные). Независимо от внешней формы собирающие линзы посредине толще, чем у краев, в то время, как рассеивающие линзы посредине тоньше, чем у краев.
М
ы
будем рассматривать тонкие
линзы, толщина
которых (расстояние АВ
между
ограничивающими поверхностями)
значительно меньше по сравнению с
расстоянием до предмета и с радиусами
R1
и
R2
поверхностей, ограничивающих линзу. В
тонких линзах точки А
и В
расположены столь близко друг от друга,
что можно принять их совпадающими с
точкой О,
называющимися оптическим
центром линзы.
Лучи света, проходящие через оптический
центр линзы, практически не преломляются.
Прямую О1О2, проходящую через центры (О1 и О2) сферических поверхностей и оптический центр линзы, называют главной оптической осью. Любую другую прямую, проходящую через оптический центр, называют побочной оптической осью (на рисунке О'1О'2).
Линзу грубо можно представить как совокупность множества призм. Тогда становится очевидным: собирающие линзы отклоняют лучи к оптической оси, а рассеивающие линзы – от оптической оси.
Параксиальные лучи (т.е. приосевые или околоосевые лучи, которые образуют с оптической осью малые углы), распространяющиеся параллельно главной оптической оси, после преломления сквозь линзу пересекаются в точке, лежащей на этой оси и называемой главным фокусом линзы. У всякой линзы имеются два фокуса по обе стороны от нее (точки F). Расстояние OF=f от оптического центра линзы до ее фокусов называется фокусным расстоянием линзы.
В
еличина,
обратная фокусному расстоянию, называется
оптической силой линзы (D=1/f).
Она измеряется в диоптриях
(дптр
или дп).
1 дптр
– оптическая сила линзы с фокусным
расстоянием 1м
(1 дптр = 1
м-1).
В отличие от собирающей линзы (левый рисунок а)), рассеивающая линза имеет мнимые фокусы (правый рисунок б)). В мнимом фокусе сходятся (после преломления) воображаемые продолжения лучей, падающих на рассеивающуюся линзу параллельно главной оптической оси.
Оптическая сила рассеивающей линзы, как ее фокусное расстояние, отрицательная величина.
П
лоскость,
проведенная через главный фокус линзы
перпендикулярно к главной оптической
оси, называется фокальной
плоскостью.
Лучи, падающие на линзу параллельно
какой-либо побочной оптической оси,
после преломления в линзе, пересекаются
в точке, лежащей на фокальной плоскости
(побочный
или вторичный
фокус, на
рисунке точка F`).
Т.е. фокальная плоскость является
геометрическом
местом всех
вторичных фокусов.
У линзы имеются две фокальные плоскости,
расположенные на ровных расстояниях
по обе стороны от нее.
Построение изображения (А1В1) предмета (АВ) в линзах осуществляется с помощью следующих лучей, ход которых нам известен:
лучи проходящие через оптический центр линзы не меняют своего направления (на рисунке, I луч);
лучи идущие параллельно главной оптической оси, после преломления в линзе (или его продолжение), проходят через второй главный фокус линзы (на рисунке, II луч);
лучи (или его продолжения), проходящие через первый главный фокус линзы, после преломления в ней, выходят из линзы параллельно ее главной оптической оси (на рисунке, III луч).
П
ересечение
любых двух таких лучей (или их продолжений)
дает изображение точки предмета, откуда
избранные лучи берут начало.
Формула тонкой линзы имеет вид:
,
где a и b – соответственно расстояния от предмета и от его изображения до оптического центра линзы. Эту формулу самостоятельно можно получить, используя подобие треугольников: ΔВАО~ΔВ1 А1 О и ΔОСF~ΔB1 A1 F .
Более сложный вид формулы тонкой линзы связывает фокусное расстояние f линзы с ее коэффициентом преломления n и радиусами R1 и R2 кривизны линзы (знак для радиусов кривизны линз берется положительный - для выпуклых поверхностей и отрицательный – для вогнутых) (см. приложения 2,3,4):
.
Так как фокусное расстояние рассеивающей линзы, как и ее оптическая сила, является отрицательной величиной, то это означает, что в формуле тонкой линзы a и b, в определенных случаях, должны иметь отрицательные значения. Правила, при помощи которых можно определить знаки a и b, в разных учебниках освещаются по-разному. Наиболее запоминающими, с моей точки зрения, являются правила, основанные на опыте повседневной жизни. Для этого надо только запомнить:
У собирающих линз f и D положительны, а у рассеивающих линз – отрицательны;
a всегда положительны;
b положительны, если изображения действительные, и отрицательны у мнимых изображений.
Отношение линейных размеров изображения и предмета называется линейным увеличением линзы (А1В1/АВ). Отрицательным значением линейного увеличения соответствует действительное изображение (оно перевернутое), положительным – мнимое изображение (оно прямое).
Нижеследующая таблица показывает характер изображения собирающей линзы в зависимости от расстояния предмета до линзы.