Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Программирование на C / C++ / Ален И. Голуб. Правила программирования на Си и Си++ [pdf]

.pdf
Скачиваний:
237
Добавлен:
02.05.2014
Размер:
5.67 Mб
Скачать

С++ для начинающих

572

#include <string> #include <algorithm> #include <fstream> #include <iterator>

main()

{

string file_name;

cout << "please enter a file to open: "; cin >> file_name;

if ( file_name.empty() || !cin ) {

cerr << "unable to read file name\n"; return -1;

}

ifstream infile( file_name.c_str()); if ( !infile ) {

cerr << "unable to open " << file_name << endl; return -2;

}

istream_iterator< string > ins( infile ), eos; ostream_iterator< string > outs( cout, " " ); copy( ins, eos, outs );

}

12.4.6. Пять категорий итераторов

Для поддержки полного набора обобщенных алгоритмов стандартная библиотека определяет пять категорий итераторов, положив в основу классификации множество операций. Это итераторы чтения (InputIterator), записи (OutputIterator), однонаправленные (ForwardIterator) и двунаправленные итераторы (BidirectionalIterator), а также итераторы с произвольным доступом (RandomAccessIterators). Ниже приводится краткое обсуждение характеристик каждой категории:

итератор чтения можно использовать для получения элементов из контейнера, но поддержка записи в контейнер не гарантируется. Такой итератор должен обеспечивать следующие операции (итераторы, поддерживающие также дополнительные операции, можно употреблять в качестве итераторов чтения при условии, что они удовлетворяют минимальным требованиям): сравнение двух итераторов на равенство и неравенство, префиксная и постфиксная форма инкремента итератора для адресации следующего элемента (оператор ++), чтение элемента с помощью оператора разыменования (*). Такого уровня поддержки требуют, в частности, алгоритмы find(), accumulate() и equal(). Любому алгоритму, которому необходим итератор чтения, можно передавать также и итераторы категорий, описанных в пунктах 3, 4 и 5;

итератор записи можно представлять себе как противоположный по функциональности итератору чтения. Иными словами, его можно использовать для записи элементов контейнера, но поддержка чтения из контейнера не гарантируется.

Такие итераторы обычно применяются в качестве третьего аргумента алгоритма (например, copy()) и указывают на позицию, с которой надо начинать копировать.

С++ для начинающих

573

Любому алгоритму, которому необходим итератор записи, можно передавать также и итераторы других категорий, перечисленных в пунктах 3, 4 и 5;

однонаправленный итератор можно использовать для чтения и записи в контейнер, но только в одном направлении обхода (обход в обоих направлениях поддерживается итераторами следующей категории). К числу обобщенных алгоритмов, требующих как минимум однонаправленного итератора, относятся adjacent_find(), swap_range() и replace(). Конечно, любому алгоритму, которому необходим подобный итератор, можно передавать также и итераторы описанных ниже категорий;

двунаправленный итератор может читать и записывать в контейнер, а также перемещаться по нему в обоих направлениях. Среди обобщенных алгоритмов, требующих как минимум двунаправленного итератора, выделяются place_merge(), next_permutation() и reverse();

итератор с произвольным доступом, помимо всей функциональности, поддерживаемой двунаправленным итератором, обеспечивает доступ к любой позиции внутри контейнера за постоянное время. Подобные итераторы требуются таким обобщенным алгоритмам, как binary_search(), sort_heap() и nthelement().

Упражнение 12.6

Объясните, почему некорректны следующие примеры. Какие ошибки обнаруживаются во

(a)const vector<string> file_names( sa, sa+6 ); vector<string>::iterator it = file_names.begin()+2;

(b)const vector<int> ivec;

fill( ivec.begin(), ivec.end(), ival );

(c)sort( ivec.begin(), ivec.end() );

(d)list<int> ilist( ia, ia+6 );

binary_search( ilist.begin(), ilist.end() );

время компиляции?

(e) sort( ivec1.begin(), ivec3.end() );

Упражнение 12.7

Напишите программу, которая читает последовательность целых чисел из стандартного ввода с помощью потокового итератора чтения istream_iterator. Нечетные числа поместите в один файл посредством ostream_iterator, разделяя значения пробелом. Четные числа таким же образом запишите в другой файл, при этом каждое значение должно размещаться в отдельной строке.

12.5. Обобщенные алгоритмы

Первые два аргумента любого обобщенного алгоритма (разумеется, есть исключения, которые только подтверждают правило) – это пара итераторов, обычно называемых first и last, ограничивающих диапазон элементов внутри контейнера или встроенного массива, к которым применяется этот алгоритм. Как правило, диапазон элементов

С++ для начинающих

574

(иногда его называют интервалом с включенной левой границей) обозначается

//читается так: включает первый и все последующие элементы,

//кроме последнего

следующим образом:

[ first, last )

Эта запись говорит о том, что диапазон начинается с элемента first и продолжается до элемента last, исключая последний. Если

first == last

то говорят, что диапазон пуст.

К паре итераторов предъявляется следующее требование: если начать с элемента first и последовательно применять оператор инкремента, то возможно достичь элемента last. Однако компилятор не в состоянии проверить выполнение этого ограничения; если оно нарушается, поведение программы не определено, обычно все заканчивается аварийным остановом и дампом памяти.

В объявлении каждого алгоритма указывается минимально необходимая категория итератора (см. раздел 12.4). Например, для алгоритма find(), реализующего однопроходный обход контейнера с доступом только для чтения, требуется итератор чтения, но можно передать и однонаправленный или двунаправленный итератор, а также итератор с произвольным доступом. Однако передача итератора записи приведет к ошибке. Не гарантируется, что ошибки, связанные с передачей итератора не той категории, будут обнаружены во время компиляции, поскольку категории итераторов это не собственно типы, а лишь параметры-типы, передаваемые шаблону функции.

Некоторые алгоритмы существуют в нескольких версиях: в одной используется встроенный оператор, а во второй объект-функция или указатель на функцию, которая предоставляет альтернативную реализацию оператора. Например, unique() по умолчанию сравнивает два соседних элемента с помощью оператора равенства, определенного для типа объектов в контейнере. Но если такой оператор равенства не определен или мы хотим сравнивать элементы иным способом, то можно передать либо объект-функцию, либо указатель на функцию, обеспечивающую нужную семантику. Встречаются также алгоритмы с похожими, но разными именами. Так, предикатные версии всегда имеют имя, оканчивающееся на _if, например find_if(). Скажем, есть алгоритм replace(), реализованный с помощью встроенного оператора равенства, и replace_if(), которому передается объект-предикат или указатель на функцию.

Алгоритмы, модифицирующие контейнер, к которому они применяются, обычно имеют две версии: одна преобразует содержимое контейнера по месту, а вторая возвращает копию исходного контейнера, в которой и отражены все изменения. Например, есть алгоритмы replace() и replace_copy() (имя версии с копированием всегда заканчивается на _copy). Однако не у всех алгоритмов, модифицирующих контейнер, имеется такая версия. К примеру, ее нет у алгоритма sort(). Если же мы хотим, чтобы сортировалась копия, то создать и передать ее придется самостоятельно.

Для использования любого обобщенного алгоритма необходимо включить в программу заголовочный файл

#include <algorithm>

С++ для начинающих

575

А для любого из четырех

численных алгоритмов adjacent_differences(),

accumulate(), inner_product() и partial_sum() включить также заголовок

#include <numeric>

Все существующие алгоритмы для удобства изложения распределены нами на девять категорий (они перечислены ниже). В Приложении алгоритмы рассматриваются в алфавитном порядке, и для каждого приводится пример применения.

12.5.1. Алгоритмы поиска

Тринадцать алгоритмов поиска предоставляют различные способы нахождения определенного значения в контейнере. Три алгоритма equal_range(), lower_bound() и upper_bound() выполняют ту или иную форму двоичного поиска. Они показывают, в

adjacent_find(), binary_search(), count(),count_if(), equal_range(), find(), find_end(), find_first_of(), find_if(), lower_bound(),

какое место контейнера можно вставить новое значение, не нарушая порядка сортировки. upper_bound(), search(), search_n()

12.5.2. Алгоритмы сортировки и упорядочения

Четырнадцать алгоритмов сортировки и упорядочения предлагают различные способы упорядочения элементов контейнера. Разбиение (partition) – это разделение элементов контейнера на две группы: удовлетворяющие и не удовлетворяющие некоторому условию. Так, можно разбить контейнер по признаку четности/нечетности чисел или в зависимости от того, начинается слово с заглавной или со строчной буквы. Устойчивый (stable) алгоритм сохраняет относительный порядок элементов с одинаковыми значениями или удовлетворяющих одному и тому же условию. Например, если дана последовательность:

{ "pshew", "honey", "Tigger", "Pooh" }

то устойчивое разбиение по наличию/отсутствию заглавной буквы в начале слова генерирует последовательность, в которой относительный порядок слов в каждой категории сохранен:

{ "Tigger", "Pooh", "pshew", "honey" }

При использовании неустойчивой версии алгоритма сохранение порядка не гарантируется. (Отметим, что алгоритмы сортировки нельзя применять к списку и

inplace_merge(), merge(), nth_element(), partial_sort(), partial_sort_copy(), partition(), random_shuffle(), reverse(), reverse_copy(), rotate(), rotate_copy(), sort(), stable_sort(),

ассоциативным контейнерам, таким, как множество (set) или отображение (map).) stable_partition()

С++ для начинающих

576

12.5.3. Алгоритмы удаления и подстановки

Пятнадцать алгоритмов удаления и подстановки предоставляют различные способы замены или исключения одного элемента или целого диапазона. unique() удаляет одинаковые соседние элементы. iter_swap() обменивает значения элементов,

copy(), copy_backwards(), iter_swap(), remove(), remove_copy(), remove_if(),remove_if_copy(), replace(), replace_copy(), replace_if(), replace_copy_if(), swap(), swap_range(), unique(),

адресованных парой итераторов, но не модифицирует сами итераторы. unique_copy()

12.5.4. Алгоритмы перестановки

Рассмотрим последовательность из трех символов: {a,b,c}. Для нее существует шесть различных перестановок: abc, acb, bac, bca, cab и cba, лексикографически упорядоченных на основе оператора меньше”. Таким образом, abc это первая перестановка, потому что каждый элемент меньше последующего. Следующая перестановка acb, поскольку в начале все еще находится a наименьший элемент последовательности. Соответственно перестановки, начинающиеся с b, предшествуют тем, которые начинаются с с. Из bac и bca меньшей является bac, так как последовательность ac лексикографически меньше, чем ca. Если дана перестановка bca, то можно сказать, что предшествующей для нее будет bac, а последующей cab. Для перестановки abc нет предшествующей, а для cba последующей.

next_permutation(), prev_permutation()

12.5.5. Численные алгоритмы

Следующие четыре алгоритма реализуют численные операции с контейнером. Для их

использования необходимо включить заголовочный файл <numeric>.

accumulate(), partial_sum(), inner_product(), adjacent_difference()

12.5.6. Алгоритмы генерирования и модификации

Шесть алгоритмов генерирования и модификации либо создают и заполняют новую последовательность, либо изменяют значения в существующей.

fill(), fill_n(), for_each(), generate(),generate_n(), transform()

12.5.7. Алгоритмы сравнения

Семь алгоритмов дают

разные способы сравнения

одного

контейнера

с другим

(алгоритмы

min()

и

max()

сравнивают

два

элемента).

Алгоритм

С++ для начинающих

577

lexicographical_compare() выполняет лексикографическое (словарное) упорядочение

equal(), includes(), lexicographical_compare(), max(), max_element(),

(см. также обсуждение перестановок и Приложение). min(), min_element(), mismatch()

12.5.8. Алгоритмы работы с множествами

Четыре алгоритма этой категории реализуют теоретико-множественные операции над любым контейнерным типом. При объединении создается отсортированная последовательность элементов, принадлежащих хотя бы одному контейнеру, при пересечении обоим контейнерам, а при взятии разности принадлежащих первому контейнеру, но не принадлежащих второму. Наконец, симметрическая разность это отсортированная последовательность элементов, принадлежащих одному из контейнеров,

set_union(), set_intersection(), set_difference(),

но не обоим. set_symmetric_difference()

12.5.9. Алгоритмы работы с хипом

Хип (heap) – это разновидность двоичного дерева, представленного в массиве. Стандартная библиотека предоставляет такую реализацию хипа, в которой значение ключа в любом узле больше либо равно значению ключа в любом потомке этого узла.

make_heap(), pop_heap(), push_heap(), sort_heap()

12.6. Когда нельзя использовать обобщенные

алгоритмы

Ассоциативные контейнеры (отображения и множества) поддерживают определенный порядок элементов для быстрого поиска и извлечения. Поэтому к ним не разрешается применять обобщенные алгоритмы, меняющие порядок, такие, как sort() и partition(). Если в ассоциативном контейнере требуется переставить элементы, то необходимо сначала скопировать их в последовательный контейнер, например в вектор или список.

Контейнер list (список) реализован в виде двусвязного списка: в каждом элементе, помимо собственно данных, хранятся два члена-указателя на следующий и на предыдущий элементы. Основное преимущество списка это эффективная вставка и удаление одного элемента или целого диапазона в произвольное место списка, а недостаток невозможность произвольного доступа. Например, можно написать:

vector<string>::iterator vec_iter = vec.begin() + 7;

С++ для начинающих

578

Такая форма вполне допустима и инициализирует vec_iter адресом восьмого элемента

//ошибка: арифметические операции над итераторами

//не поддерживаются списком

вектора, но запись

list<string>::iterator list_iter = slist.begin() + 7;

некорректна, так как элементы списка не занимают непрерывную область памяти. Для того чтобы добраться до восьмого элемента, необходимо посетить все промежуточные.

Поскольку список не поддерживает произвольного доступа, то алгоритмы merge(), remove(), reverse(), sort() и unique() лучше к таким контейнерам не применять, хотя ни один из них явно не требует наличия соответствующего итератора. Вместо этого

для списка определены специализированные версии названных операций в виде функций-членов, а также операция splice():

list::merge() объединяет два отсортированных списка

list::remove() удаляет элементы с заданным значением

list::remove_if()удаляет элементы, удовлетворяющие некоторому условию

list::reverse() переставляет элементы списка в обратном порядке

list::sort() сортирует элементы списка

list::splice() перемещает элементы из одного списка в другой

list::unique() оставляет один элемент из каждой цепочки одинаковых смежных элементов

void list::merge( list rhs ); template <class Compare>

12.6.1. Операция list_merge()

void list::merge( list rhs, Compare comp );

Элементы двух упорядоченных списков объединяются либо на основе оператора меньше”, определенного для типа элементов в контейнере, либо на основе указанной пользователем операции сравнения. (Заметьте, что элементы списка rhs перемещаются в список, для которого вызвана функция-член merge(); по завершении операции список rhs будет пуст.) Например:

С++ для начинающих

579

int array1[ 10 ] = { 34, 0, 8, 3, 1, 13, 2, 5, 21, 1 }; int array2[ 5 ] = { 377, 89, 233, 55, 144 };

list< int > ilist1( array1, array1 + 10 ); list< int > ilist2( array2, array2 + 5 );

// для объединения требуется, чтобы оба списка были упорядочены ilist1.sort(); ilist2.sort();

ilist1.merge( ilist2 );

После выполнения операции merge() список ilist2 пуст, а ilist1 содержит первые 15 чисел Фибоначчи в порядке возрастания.

12.6.2. Операция list::remove()

void list::remove( const elemType &value );

Операция remove() удаляет все элементы с заданным значением:

ilist1.remove( 1 );

template < class Predicate >

12.6.3. Операция list::remove_if()

void list::remove_if( Predicate pred );

Операция remove_if() удаляет все элементы, для которых выполняется указанное

class Even { public:

bool operator()( int elem ) { return ! (elem % 2 ); }

};

условие, т.е. предикат pred возвращает true. Например: ilist1.remove_if( Even() );

удаляет все четные числа из списка, определенного при рассмотрении merge().

12.6.4. Операция list::reverse()

void list::reverse();

С++ для начинающих

580

Операция reverse() изменяет порядок следования элементов списка на противоположный:

ilist1.reverse();

void list::sort(); template <class Compare>

12.6.5. Операция list::sort()

void list::sort( Compare comp );

По умолчанию sort() упорядочивает элементы списка по возрастанию с помощью оператора меньше”, определенного в классе элементов контейнера. Вместо этого можно явно передать в качестве аргумента оператор сравнения. Так,

list1.sort();

упорядочивает list1 по возрастанию, а

list1.sort( greater<int>() );

упорядочивает list1 по убыванию, используя оператор больше”.

void list::splice( iterator pos, list rhs );

void list::splice( iterator pos, list rhs, iterator ix ); void list::splice( iterator pos, list rhs,

12.6.6. Операция list::splice()

iterator first, iterator last );

Операция splice() имеет три формы: перемещение одного элемента, всех элементов или диапазона из одного списка в другой. В каждом случае передается итератор, указывающий на позицию вставки, а перемещаемые элементы располагаются

int array[ 10 ] = { 0, 1, 1, 2, 3, 5, 8, 13, 21, 34 }; list< int > ilist1( array, array + 10 );

непосредственно перед ней. Если даны два списка:

list< int > ilist2( array, array + 2 ); // содержит 0, 1

то следующее обращение к splice() перемещает первый элемент ilist1 в ilist2. Теперь ilist2 содержит элементы 0, 1 и 0, тогда как в ilist1 элемента 0 больше нет.

С++ для начинающих

581

//ilist2.end() указывает на позицию, куда нужно переместить элемент

//элементы вставляются перед этой позицией

//ilist1 указывает на список, из которого перемещается элемент

//ilist1.begin() указывает на сам перемещаемый элемент

ilis2.splice( ilist2.end(), ilist1, ilist1.begin() );

В следующем примере применения splice() передаются два итератора,

list< int >::iterator first, last;

first = ilist1.find( 2 ); last = ilist1.find( 13 );

ограничивающие диапазон перемещаемых элементов: ilist2.splice( ilist2.begin(), ilist1, first, last );

В данном случае элементы 2, 3, 5 и 8 удаляются из ilist1 и вставляются в начало ilist2. Теперь ilist1 содержит пять элементов 1, 1, 13, 21 и 34. Для их перемещения

list< int >::iterator pos = ilist2.find( 5 );

в ilist2 можно воспользоваться третьей вариацией операции splice(): ilist2.splice( pos, ilist1 );

Итак, список ilist1 пуст. Последние пять элементов перемещены в позицию списка ilist2, предшествующую той, которую занимает элемент 5.

void list::unique();

template <class BinaryPredicate>

12.6.7. Операция list::unique()

void list::unique( BinaryPredicate pred );

Операция unique() удаляет соседние дубликаты. По умолчанию при сравнении используется оператор равенства, определенный для типа элементов контейнера. Например, если даны значения {0,2,4,6,4,2,0}, то после применения unique() список останется таким же, поскольку в соседних позициях дубликатов нет. Но если мы сначала отсортируем список, что даст {0,0,2,2,4,4,6}, а потом применим unique(), то получим четыре различных значения {0,2,4,6}.

ilist.unique();

Вторая форма unique() принимает альтернативный оператор сравнения. Например,