
- •Интерференция световых волн. Условия минимума и максимума освещенности.
- •Методы получения интерференционных картин.
- •Временная и пространственная когерентность.
- •Интерференция в тонких пленках. Два вида интерференции в тонких пленках. Кольца Ньютона.
- •Интерференция света в тонких плёнках
- •2 Вида интерф. Картин в тонких пленках
- •Дифракция света. Принцип Гюйгенса – Френеля.
- •Метод зон Френеля.
- •Дифракция Френеля на простейших преградах.
- •Дифракция Фраунгофера на одной щели.
- •Дифракционные приборы.
- •Разрешающая способность оптических приборов [r]
- •Дифракция на многомерных структурах. (Фраунгофера)
- •Поляризация света. Поляризаторы и анализаторы. Закон Малюса. Степень поляризации.
- •Поляризация при отражении и преломлении света на поверхности диэлектрика. Закон Брюстера.
- •Оптически анизотропные вещества. Двойное лучепреломление. Эффекты Керра и Коттона-Мутона
- •Вращение плоскости поляризации
- •Тепловое излучение, его свойства и характеристики
- •Законы теплового излучения.
- •Формула Релея – Джинса. «Ультрафиолетовая катастрофа»
- •Формула Планка и ее анализ. Пирометрия.
- •Внешний фотоэффект. Законы внешнего фотоэффекта.(свет, а не фото)
- •Эксперимент. Установка
- •Фотонная теория света. Уравнение Эйнштейна для фотоэффекта.
- •Внутренний фотоэффект. Вентильный фотоэффект.
- •Эффект Комптона.
- •Давление света и его объяснение.
- •Опыты Резерфорда по рассеянию альфа-частиц. Планетарная модель атома. Постулаты Бора. Энергетический спектр атома водорода. Спектральные серии.
- •Теория водородоподобных атомов. Затруднения теории.
- •28. Корпускулярно-волновой дуализм микрочастиц и его опытное обоснование. Волновая функция микрочастицы и ее свойства.
- •Основные идеи квантовой механики. Соотношение неопределенностей.
- •Временное и стационарное уравнения Шредингера и их решения.
- •Микрочастица в бесконечно глубокой потенциальной яме и ее волновая функция.
- •Микрочастица в потенциальной яме конечной глубины. Туннельный эффект.
- •Атом водорода в квантовой механике.
- •Квантовые числа (главное, орбитальное и магнитное) и их смысл. Вырожденные состояния. S-, p-, d-, f-, … - состояния электрона в атоме. Электронные облака.
- •35. Эффекты Зеемана и Штарка. Мультиплетность энергетических уровней. Опыты Штерна-Герлаха. Спин электрона. Магнитное спиновое число.
- •Рентгеновское излучение. Тормозные и характеристические рентгеновские спектры.
- •Строение и свойства атомного ядра. Капельная и оболочечная модели ядра. Ядерные реакции. Закономерности протекания ядерных реакций
- •38.Радиоактивность. Виды радиоактивного распада. Закон радиоактивного распада. Активность радиоактивного вещества
- •39. Элементарные частицы и античастицы. Их классификация. Понятие о кварковой структуре адронов.
Временная и пространственная когерентность.
Важным свойством двух одновременно протекающих волновых процессов является их когерентность.
Когерентность волны – волны одинаковой частоты, одного направления с пост. разностью фаз.
Временная когерентность электромагнитных (световых) волн.
Необходимо отметить, что когерентность двух электромагнитных полей определяет независимость средней разности их полных фаз от времени. По этой причине отмечается роль времени в определении когерентности и её в соответствии с этим обстоятельством называют временной когерентностью.
|
|
|
|
|
|
Пространственная когерентность электромагнитных (световых) волн.
Из следует, что размер области, в которой можно наблюдать интерференцию волн, излучаемых частично-когерентными источниками, обратно пропорционален угловому размеру ОРИ. Это обстоятельство имеет определяющее значение при рассмотрении интерференции когерентных волн, испускаемых не точечными, а протяжёнными источниками.
Возможность наблюдать интерференцию когерентных волн от протяжённых источников приводит к понятию пространственной когерентности электромагнитных волн.
|
Интерференция в тонких пленках. Два вида интерференции в тонких пленках. Кольца Ньютона.
Томас Юнг, первым объяснил явление интерференции света, ввел термин «интерференция» и объяснил «цветастость» тонких пленок. Он также выполнил первый демонстрационный эксперимент по наблюдению интерференции света, получив интерференцию от двух щелевых источников света; позднее этот опыт Юнга стал классическим.
Интерференция света в тонких плёнках
Интерференция в тонкой плёнке. Альфа — угол падения, бета — угол отражения, жёлтый луч отстанет от оранжевого, они сводятся глазом в один и интерферируют.
Пленка называется тонкой, если её толщина сравнима с длиной волны света (10-7м). Так, интерференция возникает при разделении первоначального луча света на два луча при его прохождении через тонкую плёнку, например плёнку, наносимую на поверхность линз у просветлённых объективов.
—
условие максимума;
—
условие минимума,
где
k=0,1,2... и
— оптическая
длина пути первого
и второго луча, соответственно.
Явление интерференции наблюдается в тонком слое керосина или масла на поверхности воды, в мыльных пузырях, бензине, на крыльях бабочек, и т. д.
2 Вида интерф. Картин в тонких пленках
1. полосы равного наклона
2. полосы равной тощины
Кольца Ньютона - интерференционные максимумы и минимумы в форме кольца, появляющиеся вокруг точки касания выпуклой линзы и плоскопараллельной пластины при прохождении света сквозь линзу и пластину. Удовлетворительно объяснить, почему возникают кольца, Ньютон не смог. Удалось это Юнгу. Проследим за ходом его рассуждений. В их основе лежит предположение о том, что свет — это волны.
Рассмотрим случай, когда волна определенной длины падает почти перпендикулярно на плосковыпуклую линзу.
Волна 1 появляется в результате отражения от выпуклой поверхности линзы на границе стекло — воздух, а волна 2 — в результате отражения от пластины на границе воздух — стекло. Эти волны когерентны, то есть они имеют одинаковую длину и постоянную разность фаз, которая возникает из-за того, что волна 2 проходит больший путь, чем волна 1. Если вторая волна отстает от первой на целое число длин волн, то, складываясь, волны усиливают друг друга.
—
max, где -
любое
целое число,
-
длина волны.
Напротив, если вторая волна отстает от первой на нечетное число полуволн, то колебания, вызванные ими, будут происходить в противоположных фазах и волны гасят друг друга.
—
min, где -
любое
целое число,
-
длина волны.
Для учета того, что в разных веществах скорость света различна, для определения положения min и max используют не разность хода, а оптическую разность хода. Разность оптических длин пути называется оптическая разность хода.
—
оптическая длина
пути,
—
оптическая разность
хода.
Радиус k-го светлого кольца Ньютона (в предположении постоянного радиуса кривизны линзы) в отражённом свете выражается следующей формулой:
где
R — радиус кривизны линзы;
k = 2, 4, …;
λ — длина волны света в вакууме;
n — показатель преломления среды между линзой и пластинкой.
Кольца Ньютона используются для измерения радиусов кривизны поверхностей, для измерения длин волн света и показателей преломления. В некоторых случаях (например, при сканировании изображений на плёнках или оптической печати с негатива) кольца Ньютона представляют собой нежелательное явление.