
- •Электроника и микросхемотехника
- •1 Аналоговая схемотехника
- •1.1 Резисторы (сопротивления)
- •1.2 Конденсаторы
- •1.3 Индуктивность
- •1.4 Диоды
- •1.5 Биполярные транзисторы
- •1.6 Униполярные транзисторы
- •1.7 Тиристоры
- •1.8 Транзисторы igbt (Ай Жи Би Ти)
- •1.9 Сит транзисторы и сит-тиристоры
- •1.10 Новые разработки транзисторов и тиристоров
- •1.11 Обратные связи
- •1.12 Операционные усилители
- •2 Логические схемы
- •2.1 Основные определения
- •2.2 Диодные логические схемы
- •2.3 Ттл логические схемы
- •2.4 Особенности 530, 531, 533, 555 серий
- •2.5 Логика на униполярных транзисторах
- •2.6 Логика с оптическими связями
- •2.7 Программируемые логические интегральные схемы (плис)
- •2.8 Обобщенная модель плис
- •2.9 Микросхема плм (к556 рт 1)
- •3 Триггеры
- •3.1 Триггеры на биполярных транзисторах
- •3.2 Триггеры на униполярных транзисторах
- •3.3 Триггеры на логических элементах
- •3.4 Синхронный rs–триггер
- •3.5 Счетный триггер на логических элементах
- •3.8 Интегральный шестиэлементный d–триггер тм2
- •3.10 Прозрачные триггеры–защелки
- •3.11 Гонки
- •3.12 Триггеры на приборах с отрицательным сопротивлением. Триггеры на туннельных диодах.
- •3.13 Триггеры на тиристорах
- •3.14 Триггеры на двухбазовых диодах
- •3.15 Триггеры на операционных усилителях
- •4 Генераторы импульсов
- •4.1 Мультивибраторы на биполярных транзисторах
- •4.1.1 Мультивибраторы в ждущем режиме
- •Мультивибраторы на биполярных транзисторах в автоколебательном режиме.
- •4.2 Ждущий мультивибратор на униполярных транзисторах
- •4.3 Генератор импульсов на двух логических элементах с двумя конденсаторами в автоколебательном режиме
- •4.4 Генератор импульсов на четырех логических элементах с одним конденсатором
- •4.5 Генераторы импульсов на логических элементах в ждущем режиме
- •4.6 Генератор импульсов на туннельном диоде в ждущем режиме
- •4.7 Генератор импульсов на туннельном диоде в автоколебательном режиме
- •4.8 Генератор импульсов на тиристоре в ждущем режиме
- •4.9 Генератор импульсов на тиристоре в автоколебательном режиме
- •4.10 Таймеры
- •4.11 Генератор импульсов в ждущем режиме на таймере
- •4.12 Генератор импульсов в автоколебательном режиме на таймере
- •4.13 Блокинг–генераторы в ждущем режиме
- •4.14 Блокинг–генератор в автоколебательном режиме
- •4.15 Магнито–транзисторный преобразователь двухплечевой
- •4.16 Схема с дополнительным трансформатором
- •4.17 Мостовая и полумостовая схемы магнито–транзисторных преобразователей
- •4.18 Генераторы импульсов на оу в автоколебательном режиме
- •4.19 Генератор импульсов на оу в ждущем режиме
- •4.20 Кварцевая стабилизация импульсных генераторов
- •4.21 Генератор импульсов, стабилизированный кварцем
- •5 Генераторы синусоидальных колебаний
- •5.1 Общие определения
- •5.2 Генератор синусоидальных колебаний с lc контуром и трансформаторной ос
- •5.3 Схемы с индуктивной, емкостной трехточками
- •5.4 Rc цепи для генераторов синусоидальных колебаний
- •5.5 Генераторы синусоидальных колебаний с r и c–параллелями
- •5.6 Генераторы синусоидальных колебаний с кварцевой стабилизацией
- •5.7 Генераторы синусоидальных колебаний на оу
- •6 Цифроаналоговые и аналого–цифровые преобразователи
- •6.1 Цифроаналоговые преобразователи
- •6.1.1 Цап с весовыми резисторами
- •6.1.2 Цап с матрицей r–2r
- •6.1.3 Цап с сигма–дельта модуляцией
- •6.1.4 Цап с прямым преобразованием
- •6.2 Аналого–цифровые преобразователи
- •6.2.1 Следящие ацп
- •6.2.2 Развертывающие ацп
- •6.2.3 Ацп с регистром последовательного приближения
- •6.2.4 Ацп с двойным интегрированием
- •6.2.5 Ацп параллельного преобразования
- •6.2.6 Ацп с сигма–дельта ( ) модуляцией
- •6.2.7 Микросхема кр1108 пп–1
- •7 Источники питания электронных устройств
- •7.1 Общие определения
- •7.2 Выпрямители
- •7.3 Параметрические стабилизаторы напряжения
- •7.4 Компенсационные стабилизаторы напряжения
- •7.5 Импульсные стабилизаторы напряжения
- •7.6 Импульсные корректоры коэффициента мощности
4.3 Генератор импульсов на двух логических элементах с двумя конденсаторами в автоколебательном режиме
На рисунке 4.9, б), в), г) изображены генераторы импульсов на двух логических элементах с двумя конденсаторами в автоколебательном режиме.
Рисунок 4.9 — Генераторы импульсов на двух логических элементах с двумя конденсаторами в автоколебательном режиме
В схеме, изображенной
на рисунке 4.9, а) конденсаторы поставлены
вместо резистивных связей триггера.
Для того чтобы не образовывалась
“некультурная” с точки зрения электроники
цепь, состоящая из перехода Б–Э
транзистора и конденсатора, вводятся
резисторы смещения
,
которые устанавливают режим транзисторов
– ток смещения.
На второй схеме (см. рисунок 4.9, б) конденсаторы и резисторы включены аналогично. Одновременно со смещением и в предыдущей схеме (рисунок 4.9, а), и в этой резисторы выполняют времязадающую роль.
– постоянная
времени.
Следовательно, длительность импульса определяется следующей формулой:
,
с
где
соответствует низкому уровню–нулю,
–
единице,
–
напряжению питания.
На третьей схеме (рисунок 4.9, в) всё аналогично, но изображено условно. При этом на свободных входах высокие уровни. Если на любой свободный вход подать нуль, то генерация прекращается, так как эти схемы безусловного подчинения нулю. При необходимости регулировать длительность импульсов или частоту, вместо резисторов следует поставить потенциометры или ступенчато, через переключатели, изменять величины емкостей.
Обычно диапазон регулировки не более, чем пятикратный. Наименьшая частота, которую можно получить,– герцы, наибольшая частота – несколько МГц.
Когда необходима электронная регулировка частоты, схему можно представить в виде, изображенном на рисунке 4.9, г). Если транзисторы ставятся отдельно, последовательно с резисторами, то длительности вершин и оснований различаются.
Достоинством схемы является несложность. К недостаткам относят низкую термостабильность, зависимость от напряжения питания и наличие двух конденсаторов.
4.4 Генератор импульсов на четырех логических элементах с одним конденсатором
На рисунке 4.10, а приведена схема генератора импульсов, в которую введены два операционных усилителя, б), в), г) относятся к логическим элементам.
Первый операционный усилитель совместно с навесными компонентами R1, R2, R3 реализует схему неинвертирующего триггера, второй – интегратора (R4, С).
Если на вход интегратора подать напряжение U1(t), то на выходе получим U2(t) (см. рисунок 4.11). И наоборот, если отдельно U2(t) подать на вход неинвертирующего триггера, то получим U1(t).
Рисунок 4.10 — Схемы на четырех логических элементах с одним конденсатором
Рисунок 4.11 — Графики входного и выходного напряжений
После объединения этих двух схем получится генератор импульсов на двух ОУ с одним конденсатором, так как формы колебаний на входах и выходах элементов соответствуют друг другу.
При выборе логического элемента вместо ОУ для интегратора получается условный эквивалент интегратора на логическом элементе (см. рисунок 4.12).
Рисунок 4.12 — Интегратор на логическом элементе
В качестве триггера можно использовать прозрачный Д–триггер (см. раздел 3.11) на четырех логических элементах (триггер–защелка). Но можно сделать проще: вместо триггера взять два логических элемента &1 и &2, соединенных последовательно (см. рисунок 4.10, б). Четвертый логический элемент &4 устанавливают для нормализации формы импульсов. Нормализация – это придание П–образности, формы меандра. Таким образом, получаем такую же схему, что и на рисунке 4.10, а).
В книгах схему рисунка 4.10, б) изображают несколько иначе, а именно, как на рисунке 4.10, в). Здесь все то же самое, что и на рисунке 4.10,б), только другие цифры номеров логических элементов.
Четвертый вариант схемы (см. рисунок 4.10, г) используется в случаях, если необходима частичная регулировка длительности и частоты генерируемых импульсов, которые рассчитываются по следующей формуле:
,
Если R=0, то в качестве него берётся выходное сопротивление логической микросхемы &1.
К достоинствам генератора следует отнести высокую стабильность, небольшую зависимость от температуры, устойчивость к внешним электромагнитным излучениям.
Устойчивость объясняется тем, что в контуре с обратной связью три логических элемента. Следовательно, на временных интервалах фронтов и спадов конденсатор С – это короткое замыкание (&2 закорачивается в схеме на рисунке 4.10, в). В контуре остаются элементы &1, &3, дающие повторение импульсов, т.е. фазовый сдвиг . Это условие является необходимым для организации положительной обратной связи (условие генерации). На интервалах вершин и оснований импульсов конденсатор С не закорачивает &2, в итоге в контуре три логических элемента, которые в целом дают инверсию (переворот фазы). Таким образом, действует отрицательная обратная связь, стабилизирующая вершины и основания, а, следовательно, и частоту генерируемых импульсов. В предыдущей схеме рисунка 4.9 такого нет, поэтому, она менее нестабильна. Схема рисунка 4.10, в) хорошо работает на логических элементах с открытым коллектором типа ЛА7, ЛА8. Она также работает на обычных элементах типа ЛА3, но импульсы непрямоугольные.