Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекция по системам передачи.doc
Скачиваний:
8
Добавлен:
09.11.2019
Размер:
504.32 Кб
Скачать

Тема 4.3 Синхронізація в цсп

Тактовая синхронизация. Выделение тактовой частоты

Принципы построения систем тактовой синхронизации. Устрой­ства тактовой синхронизации УТС обеспечивают синхронную ра­боту ГО приемной и передающей частей ЦСП. Только в этом случае ГО приемной части будет вырабатывать управляющие сигналы, совпадающие по частоте и времени с импульсными по­следовательностями, поступающими в приемное оборудование ЦСП из линейного тракта, обеспечивая тем самым правильное распределение принимаемых импульсов по канальным интервалам и циклам и соответственно правильное декодирование кодовых комбинаций. Следовательно, основная задача УТС — исключить расхождение частот ГО передачи и приема или, в крайнем случае, обеспечить небольшую величину этого расхождения. Как извест­но, в аналоговых системах передачи для этих целей применяют, в основном, технические решения, обеспечивающие стабилизацию частоты задающих генераторов приемного и передающего обору­дования (например, кварцевую стабилизацию). Рассмотрим, до­статочно ли применения принципа стабилизации частоты ЗГ для цифровых систем передачи.

Предположим, что частота ЗГ первичной ЦСП fзг = fт = = 2,048 МГц. Определим максимально допустимую относительную нестабильность частоты ЗГ: k = fзгmax/fзг н, где fзг н — номи­нальное значение fзг , а fзгmах—максимальное отклонение час­тоты ЗГ от номинального значения. Очевидно, что в предельном случае управляющий распределительный импульс может не сов­падать по временному положению с регистрируемым на величи­ну, равную длительности одного символа, т, е. половину тактово­го интервала Т/2 (в этом случае говорят о несинхронное пере­дающего и приемного оборудования по символам). В наихудшем случае при отклонении частот ЗГ в разные стороны от fзп н на величину fзп mах взаимное положение регистрируемого и управляющего импульсов должно отличаться на t<T/2= l/(2f). При этом период fт не должен изменяться больше чем на Т/4.

Предположим, что в момент включения системы частоты ЗГ передающей и приемных частей первичной ЦСП одинаковы и в дальнейшем расходятся. Определим, за какой промежуток време­ни tпс при относительной нестабильности k частот ЗГ будет до­стигнуто положение не синхронности по символам. Так как

tпс = T/(4k) = 1/(4fтk), то, следовательно, k= l/(4fTtпc) 1/(8*10-6fпc). Если принять, что система будет выходить из состояния синхро­низма каждый час (а это будет очень плохая система, так как выход из состояния синхронизма по символам приводит к прекра­щению связи), то требуемая в этом случае относительная неста­бильность частоты ЗГ составит k= 1/(8*106• 3,6• 103) 3,7*10-11, что недостижимо по техническим и экономическим соображениям.

Вывод, следующий из вышеприведенных расчетов: реализация современных ЦСП без устройств тактовой синхронизации (фази­рования по посылкам) невозможна.

В ЦСП к устройствам тактовой синхронизации предъявляются следующие требования:

высокая точность подстройки частоты и фазы управляющего сигнала ЗГ приемной части; малое время вхождения в синхронизм; сохранение состояния синхронизма при кратковременных пере­рывах связи.

Различают две группы УТС, отличающиеся методом использо­вания синхросигналов. К первой группе относятся устройства с синхронизацией по специальному синхросигналу. Этот метод ус­ложняет построение линейного тракта ЦСП и генераторного обо­рудования, к тому же точность установки фазы управляющих сигналов в большой степени связана с нелинейными искажениями и неравномерностью частотных характеристик линейного тракта. Ко второй группе относятся методы подстройки фазы управляю­щих импульсов под основной принимаемый сигнал. Такую под­стройку можно осуществить либо по специальным синхроимпуль­сам, либо по рабочим импульсам (элементам кодовых комбина­ций цикла). Применение специальных синхроимпульсов снижает пропускную способность системы, поэтому на практике нашел применение метод тактовой синхронизации по рабочим импуль­сам. Эту группу УТС можно разделить на две подгруппы, отли­чающиеся способом выделения тактовой частоты.

Основное применение в ЦСП с невысокой скоростью передачи нашли УТС с резонансной системой для выделения тактовой час­тоты. Достоинства таких систем — простота реализации и, как следствие, улучшение экономических показателей системы, явля­ются определяющими при реализации ЦСП местных и зоновых сетей. Недостатки УТС такого типа: быстрое пропадание тактовой частоты при перерывах связи или при появлении в принимаемом сигнале длинных серий пробелов (нулей); зависимость стабильно­сти выделенной тактовой частоты (а следовательно, и точности фазирования) от длины серии нулей (характера кодовых комби­наций) и стабильности параметров фильтра, выделителя тактовой частоты, а также от скорости передачи.

Более сложным является метод синхронизации с применением устройств автоподстройки частоты генераторов тактовой частоты приемного оборудования, лишенный недостатков первого метода. Иногда эти два метода называют соответственно методами пас­сивной и активной фильтрации частоты. Устройства тактовой син­хронизации с активной фильтрацией получают все большее рас­пространение в ЦСП в связи с их достоинствами и упрощением вопросов реализации на основе более совершенной элементной базы, обеспечиваемой развитием микроэлектроники.

Сущность метода пассивной фильтрации тактовой частоты состоит в том, что из входного цифрового сигнала с помощью по­лосовых фильтров, резонансных контуров или избирательных уси­лителей выделяется тактовая частота. Часть УТС, обеспечивающая выполнение этих функций, называется выделителем тактовой частоты. Структурная схема этого устройства приведена на рис. 3.23, а, а структура всего УТС — на рис. 3.23, б.

Рассмотрим сущность резонансного метода. Известно, что энергетический спектр случайной последовательности импульсов со скважностью q>1 содержит как непрерывную Gн(f), так и дис­кретную <Gд(f) составляющую (рис. 3.24, а). Дискретная часть энергетического спектра представляет собой сумму гармоник, кратных тактовой частоте (частоте следования импульсов). Этот вывод можно сделать, не применяя сложных математических вы­кладок, если представить случайный двоичный сигнал и в виде суммы регулярной однополярной последовательности импульсов и случайной двухполярной последовательности импульсов.

Как известно, регулярная последовательность импульсов с так­товой частотой fт имеет дискретный (линейчатый) спектр GД(f), в составе которого в качестве первой гармоники выступает состав­ляющая с частотой, равной тактовой. Попутно отметим, что слу­чайная двухполярная последовательность импульсов, как видно из рисунка, не может быть в свою очередь получена как сумма случайной и регулярной составляющих и, следовательно, спектр такой последовательности не содержит дискретных составляющих. Очевидно, что превращение двухполярной последовательности в однополярную (например, применением выпрямительных уст­ройств) позволяет восстановить дискретную часть спектра. Сле­дует обратить внимание на то, что если линейный сигнал пред­ставляет собой случайную последовательность импульсов с часто­той fт и

q= 1, то энергетический спектр такого сигнала вообще не содержит дискретной части спектра. Сказанное можно проследить по рис. 3.25, а, на котором показано, что, если q>1, то регулярная последовательность импульсов «сливается» в постоянную состав­ляющую.