
- •060101 65 – Лечебное дело, 060103 65 – Педиатрия, 060105 65 – Стоматология, 060104 65 – Медико-профилактическое дело
- •Тема 1. Поверхностные явления 12
- •Предисловие
- •Введение
- •Тема 1. Поверхностные явления
- •1. Свободная поверхностная энергия, поверхностное натяжение
- •2. Смачивание, адгезия, когезия
- •3. Сорбция и ее виды
- •Абсорбция
- •Адсорбция на подвижной поверхности раздела фаз
- •Адсорбция пав в системе воздух-вода
- •Адсорбция на неподвижной поверхности раздела фаз
- •Молекулярная (неэлектролитов) адсорбция из растворов.
- •Адсорбция ионов из растворов
- •Ионообменная адсорбция
- •Основные физико-химические характеристики ионитов
- •4. Хроматография
- •5. Биологические поверхностно-активные вещества
- •6. Медико-биологическое значение адсорбции
- •Типы сорбентов, использующихся для удаления различных веществ
- •Основные области применения энтеросорбентов
- •Тема 2. Дисперсные системы
- •1. Классификация дисперсных систем
- •Свободно- и связнодисперсные системы
- •Лиофобные и лиофильные дисперсные системы
- •Классификация дс по агрегатному состоянию дисперсной фазы и дисперсионной среды
- •2. Методы получения и очистки дисперсных систем
- •Методы очистки дисперсных систем
- •3. Лиофобные коллоидные растворы
- •Строение мицелл в лиофобных коллоидных растворах
- •Устойчивость лиофобных коллоидных растворов
- •Кинетика коагуляции
- •Механизм коагуляции
- •Пептизация или физико-химическое диспергирование
- •Коллоидная защита и флокуляция
- •4. Лиофильные коллоидные растворы
- •Истинный раствор ((;(( коллоидный раствор.
- •Зависимость области применения пав от значения глб
- •Свойства лиофильных коллоидных растворов пав и вмс
- •Ослабление высаливающего действия
- •Солюбилизация
- •5. Микрогетерогенные дисперсные системы
- •Аэрозоли и их свойства
- •Порошки и их свойства
- •Суспензии и их свойства
- •Эмульсии и их свойства
- •Пены и их свойства
- •Тема 3. Свойства вмс и их растворов
- •Классификация вмс
- •Полимерные полиэлектролиты и их свойства
- •Свойства растворов вмс, общие с истинными растворами:
- •Кислотно-основные свойства белков
- •Значения pI белков живого организма
- •Окислительно-восстановительные свойства белков
- •Комплексообразующие свойства белков
- •Поверхностные свойства белков
- •3. Набухание и растворение вмс
- •4. Вязкость растворов вмс
- •5. Осмотические свойства растворов вмс
- •6. Мембранное равновесие Доннана
- •7. Устойчивость и разрушение растворов вмс
- •8. Застудневание (желатинирование). Возникновение связнодисперсных систем и их свойства
- •Обучающие тесты
- •Обучающие задачи
- •Учебно-исследовательские лабораторные работы
- •Тема I. Поверхностные явления
- •Тема: Адсорбция уксусной кислоты на активированном угле. Качественные опыты по адсорбции и хроматографии
- •Тема: Определение обменной емкости ионита
- •Тема: Изотерма поверхностного натяжения и адсорбции изоамилового спирта на твердом адсорбенте
- •Учебно-исследовательская лабораторная работа № 4 Тема: Изучение адсорбции пав на твердом адсорбенте из водных растворов
- •Тема II. Дисперсные системы
- •Тема: Получение и свойства лиофобных коллоидных растворов
- •Конденсационный метод получения золей (химическая конденсация)
- •II. Дисперсионный метод получения золей.
- •Тема: Устойчивость и коагуляция лиофобных коллоидных растворов. Коллоидная защита
- •Тема: Получение и свойства эмульсий
- •Тема III. Растворы вмс
- •Учебно-исследовательская лабораторная работа №8
- •Тема: Вискозиметрическое определение молекулярной
- •Массы полимера
- •Тема: Набухание вмс
- •Тестовые задания, задачи, упражнения для самостоятельного решения
- •Тема 1. Поверхностные явления
- •Тема II. Дисперсные системы
- •Тема III. Растворы вмс
- •Тестовый контроль по теме: «Поверхностные явления».
- •Тестовый контроль по теме: «Лиофобные коллоидные растворы»
- •Тестовый контроль по теме: «Свойства вмс и их растворов».
- •Темы реферативных докладов для студентов лечебного, педиатрического, стоматологического и медико-профилактического факультетов
- •Список использованной литературы
- •Приложение
- •1. Основные единицы измерения физических величин
- •2. Основные физические постоянные
- •3. Метрическая система мер
- •4. Множители и приставки для образования десятичных кратных и дольных единиц и их обозначения
- •5. Плотность пав в жидком состоянии
- •6. Зависимость поверхностного натяжения воды от температуры
- •7. Поверхностное натяжение жидкостей при 293 k
- •Зависимость адсорбции газов на древесном угле от
- •9. Золотые числа
- •10. Критические концентрации мицеллообразования для некоторых мыл
- •11. Значения констант в уравнении Марка-Хаувинка и омм полимеров
Методы очистки дисперсных систем
Биологические жидкости содержат одновременно вещества в коллоидном состоянии и примеси ионов и молекул низкомолекулярных веществ. Очистка коллоидных растворов от примесей низкомолекулярных веществ основана на том, что крупные коллоидные частицы, в отличие от НМВ не проникают через животные и растительные мембраны (коллодий, целлофан, кишечная ткань)
Диализ заключается в очистке коллоидных систем от ионов и молекул низкомолекулярных веществ в результате их диффузии в чистый растворитель через полупроницаемую перегородку (мембрану), через которую не проходят коллоидные частицы. Периодически или непрерывно сменяя растворитель в приборе для диализа – диализаторе (рис.15), можно практически полностью удалить из дисперсных систем примеси электролитов и низкомолекулярных неэлектролитов.
Рис. 15. Схема диализатора:
А – дисперсная система; Б – растворитель (вода); М – мембрана
Недостатком метода является большая длительность процесса очистки (недели, месяцы).
Э
лектродиализ
– это процесс диализа в условиях
наложения постоянного электрического
поля, под действием которого катионы и
анионы приобретают направленное движение
к электродам, и процесс очистки значительно
ускоряется.
Компенсационный или вивидиализ применяют тогда, когда необходимо освободиться лишь от части низкомолекулярных примесей. В этом случае растворитель заменяют раствором НМВ, которые необходимо оставить в коллоидном растворе.
П
о
принципу вивидиализа работает аппарат
«искусственная почка» (АИП) (рис.16),
применяемый при острой почечной
недостаточности, которая может наступить
в результате отравления, при тяжелых
ожогах и т.п.
Рис. 16. Схема аппарата «Искусственная почка»
Аппарат для гемодиализа (прообраз АИП) создал амер. ученый Дж. Абель в 1913 году, а голландский ученый В.Колф в 1944 году впервые применил его на практике.
Работа искусственной почки основана на принципе диализа веществ через полупроницаемую мембрану (целлофан) вследствие разницы их концентраций в крови и диализирующем растворе, который содержит основные электролиты крови и глюкозу в близких к физиологическим концентрациях и не содержит веществ, которые надо удалять из организма (мочевина, креатинин, мочевая кислота, сульфаты, фосфаты и др.). Белки, форменные элементы крови, бактерии и вещества с молекулярной массой более 30000 через мембрану не проходят. При гемодиализе, т. е. работе искусственной почки, кровь больного отсасывается через катетер (1) насосом (2) из нижней полой вены, проходит внутри камер из целлофановых листов диализатора (3), которые снаружи омываются диализирующим раствором, подаваемым другим насосом, и, частично очищенная, возвращается в одну из поверхностных вен. Гемодиализ проводится от 4 до 12 ч; в течение этого времени, чтобы кровь не свёртывалась, в неё вводят противосвёртывающие вещества (гепарин). При острой почечной недостаточности гемодиализ повторяют через 3–6 дней до восстановления функции почек; при хронической недостаточности, когда его необходимо проводить 2–3 раза в неделю в течение нескольких месяцев или лет, между лучевой артерией и поверхностной веной предплечья устанавливают тефлоновый шунт, с которым и соединяют искусственную почку. В этом случае кровь может поступать в диализатор без использования насоса.
У льтрафильтрация – фильтрование дисперсной системы через полупроницаемую мембрану, пропускающую дисперсионную среду с низкомолекулярными примесями и задерживающую частицы дисперсной фазы или макромолекулы.
Для ускорения процесса ультрафильтрации ее проводят, создавая разность давления на мембране, понижая давление под мембраной (создавая разрежение, вакуумируя) или повышая давление над мембраной. Для предотвращения разрыва мембраны ее помещают на твердую пористую пластинку (рис. 17).
Рис. 17. Вид полупроницаемой мембраны в микроскоп
У
льтрафильтрация
(рис.18) позволяет быстрее очистить
дисперсные систем от низкомолекулярных
электролитов и неэлектролитов, чем это
происходит при диализе. При ультрафильтрации
достигают высокой степени очистки золя,
периодически разбавляя последний водой.
Рис. 18. Схема установки для ультрафильтрации
А – дисперсная система; В – воронка; М – мембрана; П – пластина с отверстиями; У – ультрафильтрат