
- •1.1. Поняття операційної системи, її призначення та функції
- •1.1.1. Поняття операційної системи
- •1.1.2. Призначення операційної системи
- •1.1.3. Операційна система як розширена машина
- •1.1.4. Операційна система як розподілювач ресурсів
- •1.2. Історія розвитку операційних систем
- •1.3. Класифікація сучасних операційних систем
- •1.4. Функціональні компоненти операційних систем
- •1.4.1. Керування процесами й потоками
- •1.4.2. Керування пам'яттю
- •1.4.3. Керування введенням-виведенням
- •1.4.4. Керування файлами та файлові системи
- •1.4.5. Мережна підтримка
- •1.4.6. Безпека даних
- •1.4.7. Інтерфейс користувача
- •2.1. Базові поняття архітектури операційних систем
- •2.1.1. Механізми і політика
- •2.1.2. Ядро системи. Привілейований режим і
- •2.2. Реалізація архітектури операційних систем
- •2.2.1. Монолітні системи
- •2.2.2. Багаторівневі системи
- •2.2.3. Системи з мікроядром
- •2.2.4. Концепція віртуальних машин
- •2.3.1. Взаємодія ос і апаратного забезпечення
- •2.3.2. Взаємодія ос і виконуваного програмного коду
- •2.4.1. Базова архітектура unix
- •2.4.2. Архітектура Linux
- •2.5. Особливості архітектури: Windows хр
- •2.5.1. Компоненти режиму ядра
- •2.5.2. Компоненти режиму користувача
- •2.5.3. Об'єктна архітектура Windows хр
- •3.1. Базові поняття процесів і потоків
- •3.1.1. Процеси і потоки в сучасних ос
- •3.1.2. Моделі процесів і потоків
- •3.1.3. Складові елементи процесів і потоків
- •3.2. Багатопотоковість та її реалізація
- •3.2.1. Поняття паралелізму
- •3.2.2. Види паралелізму
- •3.2.3. Переваги і недоліки багатопотоковості
- •3.2.4. Способи реалізації моделі потоків
- •3.3. Стани процесів і потоків
- •3.4. Опис процесів і потоків
- •3.4.1. Керуючі блоки процесів і потоків
- •3.4.2. Образи процесу і потоку
- •3.5. Перемикання контексту й обробка переривань
- •3.5.1. Організація перемикання контексту
- •3.5.2. Обробка переривань
- •3.6. Створення і завершення процесів і потоків
- •3.6.1.Створення процесів
- •3.6.2.Ієрархія процесів
- •3.6.3.Керування адресним простором під час створення процесів
- •3.6.4. Особливості завершення процесів
- •3.6.5. Синхронне й асинхронне виконання процесів
- •3.6.6. Створення і завершення потоків
- •4.1. Загальні принципи планування
- •4.1.1. Особливості виконання потоків
- •4.1.2. Механізми і політика планування
- •4.1.3. Застосовність принципів планування
- •4.2. Види планування
- •4.2.1. Довготермінове планування
- •4.2.2. Середньотермінове планування
- •4.2.3. Короткотермінове планування
- •4.3. Стратегії планування. Витісняльна і невитісняльна багатозадачність
- •4.4. Алгоритми планування
- •4.4.1. Планування за принципом fifo
- •4.4.2. Кругове планування
- •4.4.3. Планування із пріоритетами
- •4.4.4. Планування на підставі характеристик подальшого виконання
- •4.4.5. Багаторівневі черги зі зворотним зв'язком
- •4.4.6. Лотерейне планування
- •4.5. Реалізація планування в Linux
- •4.5.1. Планування процесів реального часу в ядрі
- •6.1. Види міжпроцесової взаємодії
- •6.1.1.Методи розподілюваної пам'яті
- •6.1.2.Методи передавання повідомлень
- •6.1.3.Технологія відображуваної пам'яті
- •6.1.4.Особливості міжпроцесової взаємодії
- •6.2. Базові механізми міжпроцесової взаємодії
- •6.2.1. Міжпроцесова взаємодія на базі спільної пам'яті
- •6.2.2. Основи передавання повідомлень
- •6.2.3. Технології передавання повідомлень
- •8.1. Основи технології віртуальної пам'яті
- •8.1.1. Поняття віртуальної пам'яті
- •8.1.2. Проблеми реалізації віртуальної пам'яті. Фрагментація пам'яті
- •8.1.4. Підхід базового і межового регістрів
- •8.2. Сегментація пам'яті
- •8.2.1. Особливості сегментації пам'яті
- •8.2.2. Реалізація сегментації в архітектурі іа-32
- •8.3. Сторінкова організація пам'яті
- •8.3.1. Базові принципи сторінкової організації пам'яті
- •8.3.2. Порівняльний аналіз сторінкової організації пам'яті та сегментації
- •8.3.3. Багаторівневі таблиці сторінок
- •8.3.4. Реалізація таблиць сторінок в архітектурі іа-32
- •8.3.5. Асоціативна пам'ять
- •8.4. Сторінково-сегментна організація пам'яті
- •8.5. Реалізація керування основною пам'яттю: Linux
- •8.5.1. Використання сегментації в Linux. Формування логічних адрес
- •8.5.2. Сторінкова адресація в Linux
- •8.5.3. Розташування ядра у фізичній пам'яті
- •8.5.4.Особливості адресації процесів і ядра
- •8.5.5.Використання асоціативної пам'яті
- •8.6. Реалізація керування основною пам'яттю: Windows хр
- •8.6.1.Сегментація у Windows хр
- •8.6.2.Сторінкова адресація у Windows хр
- •8.6.3.Особливості адресації процесів і ядра
- •8.6.4. Структура адресного простору процесів і ядра
- •11.1. Поняття файла і файлової системи
- •11.1.1. Поняття файла
- •11.1.2.Поняття файлової системи
- •11.1.3.Типи файлів
- •11.1.4. Імена файлів
- •11.2. Організація інформації у файловій системі
- •11.2.1. Розділи
- •11.2.2. Каталоги
- •11.2.3. Зв'язок розділів і структури каталогів
- •11.3. Зв'язки
- •11.3.1. Жорсткі зв'язки
- •11.3.2. Символічні зв'язки
- •11.4. Атрибути файлів
- •11.5. Операції над файлами і каталогами
- •11.5.1. Підходи до використання файлів процесами
- •12.1. Базові відомості про дискові пристрої
- •12.1.1. Принцип дії жорсткого диска
- •12.1.2. Ефективність операцій доступу до диска
- •12.2. Розміщення інформації у файлових системах
- •12.2.1. Фізична організація розділів на диску
- •12.2.2. Основні вимоги до фізичної організації файлових систем
- •12.2.3. Неперервне розміщення файлів
- •12.2.4. Розміщення файлів зв'язними списками
- •12.2.5. Індексоване розміщення файлів
- •12.2.6. Організація каталогів
- •15.1. Завдання підсистеми введення-виведення
- •15.1.1. Забезпечення ефективності доступу до пристроїв
- •15.1.2. Забезпечення спільного використання зовнішніх пристроїв
- •15.1.3. Універсальність інтерфейсу прикладного програмування
- •15.1.4. Універсальність інтерфейсу драйверів пристроїв
- •15.2. Організація підсистеми введення-виведення
- •15.2.1. Символьні, блокові та мережні драйвери пристроїв
- •15.2.2. Відокремлення механізму від політики за допомогою
- •15.3. Способи виконання операцій введення-виведення
- •15.3.1. Опитування пристроїв
- •15.3.2. Введення-виведення, кероване перериваннями
- •15.3.3. Прямий доступ до пам'яті
- •15.4. Підсистема введення-виведення ядра
- •15.4.1. Планування операцій введення-виведення
- •15.4.2. Буферизація
- •15.7. Керування введенням-виведенням: unix і Linux
- •15.7.1. Інтерфейс файлової системи
- •15.7.2. Передавання параметрів драйверу
- •15.7.3. Структура драйвера
- •15.7.4. Виконання операції введення-виведення для пристрою
- •15.8. Керування введенням-виведенням: Windows хр
- •15.8.1. Основні компоненти підсистеми введення-виведення
- •15.8.2. Виконання операції введення-виведення для пристрою
- •15.8.3. Передавання параметрів драйверу пристрою
- •17.1. Термінальне введення-виведення
- •17.1.1. Організація термінального введення-виведення
- •17.1.3. Термінальне введення-виведення у Win32 api
- •17.2. Командний інтерфейс користувача 17.2.1.
- •17.2.2. Переспрямування потоків введення-виведення
- •17.2.3. Використання каналів
- •17.3. Графічний інтерфейс користувача
- •17.3.1. Інтерфейс віконної та графічної підсистеми Windows хр
- •17.3.2. Система X Window
- •17.4. Процеси без взаємодії із користувачем
- •17.4.1. Фонові процеси на основі posix
- •17.4.2. Служби Windows хр
- •16.1. Загальні принципи мережної підтримки
- •16.1.1. Рівні мережної архітектури і мережні сервіси
- •16.1.2. Мережні протоколи
- •16.2. Реалізація стека протоколів Інтернету
- •16.2.1. Рівні мережної архітектури tcp/ip
- •16.2.2. Канальний рівень
- •16.2.3. Мережний рівень
- •16.2.4. Транспортний рівень
- •16.2.5. Передавання даних стеком протоколів Інтернету
- •16.3. Система імен dns
- •16.3.1. Загальна характеристика dns
- •16.3.2. Простір імен dns
- •16.3.3. Розподіл відповідальності
- •16.3.4. Отримання ір-адрес
- •16.3.5. Кешування ір-адрес
- •16.3.6. Типи dns-ресурсів
- •16.4. Програмний інтерфейс сокетів Берклі
- •16.4.1. Особливості роботи з адресами
- •16.4.2. Створення сокетів
- •16.4.3. Робота з потоковими сонетами
- •16.4.4. Введення-виведення з повідомленням
- •19.1. Загальні принципи завантаження ос
- •19.1.1. Апаратна ініціалізація комп'ютера
- •19.1.2. Завантажувач ос
- •19.1.3. Двоетапне завантаження
- •19.1.4. Завантаження та ініціалізація ядра
- •19.1.5. Завантаження компонентів системи
- •19.2. Завантаження Linux
- •19.2.1. Особливості завантажувача Linux
- •19.2.2. Ініціалізація ядра
- •19.2.3. Виконання процесу init
- •19.3. Завантаження Windows хр
- •20.1. Багатопроцесорні системи
- •20.1.1. Типи багатопроцесорних систем
- •20.1.2. Підтримка багатопроцесорності в операційних системах
- •20.1.3. Продуктивність багатопроцесорних систем
- •20.1.4. Планування у багатопроцесорних системах
- •20.1.5. Спорідненість процесора
- •20.1.6. Підтримка багатопроцесорності в Linux
- •20.1.7. Підтримка багатопроцесорності у Windows хр
- •20.2. Принципи розробки розподілених систем
- •20.2.1. Віддалені виклики процедур
- •20.2.2. Використання Sun rpc
- •20.2.3. Використання Microsoft rpc
- •20.2.4. Обробка помилок і координація в розподілених системах
- •20.3. Розподілені файлові системи
- •20.3.1. Організація розподілених файлових систем
- •20.3.2. Файлова система nfs
- •20.3.3. Файлова система Microsoft dfs
- •20.4. Сучасні архітектури розподілених систем
- •20.4.1. Кластеры системи
- •20.4.2. Grid-системи
- •18.1. Основні завдання забезпечення безпеки
- •18.2. Базові поняття криптографії
- •18.2.1. Поняття криптографічного алгоритму і протоколу
- •18.2.2. Криптосистеми з секретним ключем
- •18.2.3. Криптосистеми із відкритим ключем
- •18.2.4. Гібридні криптосистеми
- •18.2.5. Цифрові підписи
- •18.2.6. Сертифікати
- •18.3. Принципи аутентифікаціїі керування доступом
- •18.3.1. Основи аутентифікації
- •18.3.2. Основи керування доступом
- •18.4. Аутентифікація та керування доступом в unix
- •18.4.1. Облікові записи користувачів
- •18.4.2. Аутентифікація
- •18.4.3. Керування доступом
- •18.5. Аутентифікація і керування доступом у Windows xp
- •18.5.1. Загальна архітектура безпеки
- •18.5.2. Аутентифікація
- •18.5.3. Керування доступом
- •18.6. Аудит
- •18.6.1. Загальні принципи організації аудиту
- •18.6.2. Робота із системним журналом unix
- •18.6.3. Журнал подій Windows xp
- •18.7. Локальна безпека даних
- •18.7.1. Принципи шифрування даних на файлових системах
- •18.7.2. Підтримка шифрувальних файлових систем у Linux
- •18.7.3. Шифрувальна файлова система Windows xp
- •18.8. Мережна безпека даних
- •18.8.1. Шифрування каналів зв'язку
- •18.8.2. Захист інформації на мережному рівні
- •18.8.3. Захист інформації на транспортному рівні
- •18.9. Атаки і боротьба з ними
- •18.9.1. Переповнення буфера
- •18.9.2. Відмова від обслуговування
- •18.9.3. Квоти дискового простору
- •18.9.4. Зміна кореневого каталогу застосування
4.4. Алгоритми планування
Як ми вже знаємо, алгоритм планування дає змогу короткотерміновому планувальникові вибирати з готових до виконання потоків той, котрий потрібно виконувати наступним. Можна сказати, що алгоритми планування реалізують політику планування.
Залежно від стратегії планування, яку реалізують алгоритми, їх поділяють на витісняльні та невитісняльні. Витісняльні алгоритми переривають потоки під час їхнього виконання, невитісняльні — не переривають. Деякі алгоритми відповідають лише одній із цих стратегій, інші можуть мати як витісняльний, так і невитіс-няльний варіанти реалізації.
4.4.1. Планування за принципом fifo
Розглянемо найпростіший («наївний») невитісняльний алгоритм, у якому потоки ставлять на виконання в порядку їхньої появи у системі й виконують до переходу в стан очікування, явної передачі керування або завершення. Чергу готових потоків при цьому організовують за принципом FIFO, тому алгоритм називають алгоритмом FIFO.
Як тільки в системі створюється новий потік, його керуючий блок додається у хвіст черги. Коли процесор звільняється, його надають потоку з голови черги. У такого алгоритму багато недоліків:
він за визначенням є невитісняльним;
середній час відгуку для нього може бути доволі значним (наприклад, якщо першим надійде потік із довгим інтервалом використання процесора, інші потоки чекатимуть, навіть якщо вони самі використовують тільки короткі інтервали);
він підлягає ефекту конвою (convoy effect).
Ефект конвою можна пояснити такою ситуацією. Припустимо, що в системі є один потік (назвемо його Тсри), обмежений можливостями процесора, і багато потоків Tcpu, обмежених можливостями введення-виведення. Рано чи пізно потік Гсри отримає процесор у своє розпорядження і виконуватиме інструкції з довгим інтервалом використання процесора. За цей час інші потоки Тіо завершать введення-виведення, перемістяться в чергу готових потоків і там чекатимуть, при цьому пристрої введення-виведення простоюватимуть. Коли Гсрц нарешті заблокують і відбудеться передача керування, всі потоки Гіо швидко виконають інструкції своїх інтервалів використання процесора (у них, як ми знаємо, такі інтервали короткі) і знову перейдуть до введення-виведення. Після цього Гсри знову захопить процесор на тривалий час і т. д.
4.4.2. Кругове планування
Найпростішим для розуміння і найсправедливішим витісняльним алгоритмом є алгоритм кругового планування (round-robin scheduling). У середні віки терміном «round robin» називали петиції, де підписи йдуть по колу, щоб не можна було дізнатися, хто підписався першим (ця назва свідчить, що для такого алгоритму всі потоки рівні).
Кожному потокові виділяють інтервал часу, який називають квантом часу (time quantum, time slice) і упродовж якого цьому потокові дозволено виконуватися. Коли потік усе ще виконується після вичерпання кванта часу, його переривають і перемикають процесор на виконання інструкцій іншого потоку. Коли він блокується або закінчує своє виконання до вичерпання кванта часу, процесор теж передають іншому потокові. Довжина кванта часу для всієї системи однакова.
Такий алгоритм реалізувати досить легко. Для цього черга готових потоків має бути циклічним списком. Коли потік вичерпав свій квант часу, його переміщують у кінець списку, туди ж додають і нові потоки (рис. 4.3). Перевірку вичерпання кванта часу виконують в обробнику переривання від системного таймера.
Єдиною характеристикою, яка впливає на роботу алгоритму, є довжина кванта часу. Тут слід дотримуватися балансу між часом, що витрачається на перемикання контексту, і необхідністю відповідати на багато одночасних інтерактивних запитів.
Задания надто короткого кванта часу призводить до того, що відбувається дуже багато перемикань контексту, і значний відсоток процесорного часу витрачається не на корисну роботу, а на ці перемикання. З іншого боку, задания надто довгого кванта хоча й заощаджує процесорний час, але спричиняє до зниження часу відгуку на інтерактивні запити, бо якщо десять користувачів одночасно натиснуть клавішу, то десять потоків потраплять у список готових, внаслідок чого останній з них очікуватиме десять довгих квантів часу. У випадку з квантом нескінченної довжини кругове планування зводиться до алгоритму FIFO (усі потоки встигають заблокуватися або закінчитися до вичерпання кванта). На практиці рекомендують встановлювати довжину кванта в 10-100 мс.
Зазначимо, що традиційне кругове планування може давати «перекіс» у бік потоків, обмежених можливостями процесора. Такі потоки переважно використовують свій квант повністю, тоді як потоки, обмежені можливостями введення-виведення, часто передають керування до вичерпання кванта, і в результаті їм дістається менше процесорного часу. Для вирішення цієї проблеми можна збільшувати довжину кванта (з огляду на проблеми, описані раніше) або вводити додаткову чергу потоків, що завершили введення-виведення, яка має перевагу на виконання перед чергою готових потоків.