
- •1.1. Поняття операційної системи, її призначення та функції
- •1.1.1. Поняття операційної системи
- •1.1.2. Призначення операційної системи
- •1.1.3. Операційна система як розширена машина
- •1.1.4. Операційна система як розподілювач ресурсів
- •1.2. Історія розвитку операційних систем
- •1.3. Класифікація сучасних операційних систем
- •1.4. Функціональні компоненти операційних систем
- •1.4.1. Керування процесами й потоками
- •1.4.2. Керування пам'яттю
- •1.4.3. Керування введенням-виведенням
- •1.4.4. Керування файлами та файлові системи
- •1.4.5. Мережна підтримка
- •1.4.6. Безпека даних
- •1.4.7. Інтерфейс користувача
- •2.1. Базові поняття архітектури операційних систем
- •2.1.1. Механізми і політика
- •2.1.2. Ядро системи. Привілейований режим і
- •2.2. Реалізація архітектури операційних систем
- •2.2.1. Монолітні системи
- •2.2.2. Багаторівневі системи
- •2.2.3. Системи з мікроядром
- •2.2.4. Концепція віртуальних машин
- •2.3.1. Взаємодія ос і апаратного забезпечення
- •2.3.2. Взаємодія ос і виконуваного програмного коду
- •2.4.1. Базова архітектура unix
- •2.4.2. Архітектура Linux
- •2.5. Особливості архітектури: Windows хр
- •2.5.1. Компоненти режиму ядра
- •2.5.2. Компоненти режиму користувача
- •2.5.3. Об'єктна архітектура Windows хр
- •3.1. Базові поняття процесів і потоків
- •3.1.1. Процеси і потоки в сучасних ос
- •3.1.2. Моделі процесів і потоків
- •3.1.3. Складові елементи процесів і потоків
- •3.2. Багатопотоковість та її реалізація
- •3.2.1. Поняття паралелізму
- •3.2.2. Види паралелізму
- •3.2.3. Переваги і недоліки багатопотоковості
- •3.2.4. Способи реалізації моделі потоків
- •3.3. Стани процесів і потоків
- •3.4. Опис процесів і потоків
- •3.4.1. Керуючі блоки процесів і потоків
- •3.4.2. Образи процесу і потоку
- •3.5. Перемикання контексту й обробка переривань
- •3.5.1. Організація перемикання контексту
- •3.5.2. Обробка переривань
- •3.6. Створення і завершення процесів і потоків
- •3.6.1.Створення процесів
- •3.6.2.Ієрархія процесів
- •3.6.3.Керування адресним простором під час створення процесів
- •3.6.4. Особливості завершення процесів
- •3.6.5. Синхронне й асинхронне виконання процесів
- •3.6.6. Створення і завершення потоків
- •4.1. Загальні принципи планування
- •4.1.1. Особливості виконання потоків
- •4.1.2. Механізми і політика планування
- •4.1.3. Застосовність принципів планування
- •4.2. Види планування
- •4.2.1. Довготермінове планування
- •4.2.2. Середньотермінове планування
- •4.2.3. Короткотермінове планування
- •4.3. Стратегії планування. Витісняльна і невитісняльна багатозадачність
- •4.4. Алгоритми планування
- •4.4.1. Планування за принципом fifo
- •4.4.2. Кругове планування
- •4.4.3. Планування із пріоритетами
- •4.4.4. Планування на підставі характеристик подальшого виконання
- •4.4.5. Багаторівневі черги зі зворотним зв'язком
- •4.4.6. Лотерейне планування
- •4.5. Реалізація планування в Linux
- •4.5.1. Планування процесів реального часу в ядрі
- •6.1. Види міжпроцесової взаємодії
- •6.1.1.Методи розподілюваної пам'яті
- •6.1.2.Методи передавання повідомлень
- •6.1.3.Технологія відображуваної пам'яті
- •6.1.4.Особливості міжпроцесової взаємодії
- •6.2. Базові механізми міжпроцесової взаємодії
- •6.2.1. Міжпроцесова взаємодія на базі спільної пам'яті
- •6.2.2. Основи передавання повідомлень
- •6.2.3. Технології передавання повідомлень
- •8.1. Основи технології віртуальної пам'яті
- •8.1.1. Поняття віртуальної пам'яті
- •8.1.2. Проблеми реалізації віртуальної пам'яті. Фрагментація пам'яті
- •8.1.4. Підхід базового і межового регістрів
- •8.2. Сегментація пам'яті
- •8.2.1. Особливості сегментації пам'яті
- •8.2.2. Реалізація сегментації в архітектурі іа-32
- •8.3. Сторінкова організація пам'яті
- •8.3.1. Базові принципи сторінкової організації пам'яті
- •8.3.2. Порівняльний аналіз сторінкової організації пам'яті та сегментації
- •8.3.3. Багаторівневі таблиці сторінок
- •8.3.4. Реалізація таблиць сторінок в архітектурі іа-32
- •8.3.5. Асоціативна пам'ять
- •8.4. Сторінково-сегментна організація пам'яті
- •8.5. Реалізація керування основною пам'яттю: Linux
- •8.5.1. Використання сегментації в Linux. Формування логічних адрес
- •8.5.2. Сторінкова адресація в Linux
- •8.5.3. Розташування ядра у фізичній пам'яті
- •8.5.4.Особливості адресації процесів і ядра
- •8.5.5.Використання асоціативної пам'яті
- •8.6. Реалізація керування основною пам'яттю: Windows хр
- •8.6.1.Сегментація у Windows хр
- •8.6.2.Сторінкова адресація у Windows хр
- •8.6.3.Особливості адресації процесів і ядра
- •8.6.4. Структура адресного простору процесів і ядра
- •11.1. Поняття файла і файлової системи
- •11.1.1. Поняття файла
- •11.1.2.Поняття файлової системи
- •11.1.3.Типи файлів
- •11.1.4. Імена файлів
- •11.2. Організація інформації у файловій системі
- •11.2.1. Розділи
- •11.2.2. Каталоги
- •11.2.3. Зв'язок розділів і структури каталогів
- •11.3. Зв'язки
- •11.3.1. Жорсткі зв'язки
- •11.3.2. Символічні зв'язки
- •11.4. Атрибути файлів
- •11.5. Операції над файлами і каталогами
- •11.5.1. Підходи до використання файлів процесами
- •12.1. Базові відомості про дискові пристрої
- •12.1.1. Принцип дії жорсткого диска
- •12.1.2. Ефективність операцій доступу до диска
- •12.2. Розміщення інформації у файлових системах
- •12.2.1. Фізична організація розділів на диску
- •12.2.2. Основні вимоги до фізичної організації файлових систем
- •12.2.3. Неперервне розміщення файлів
- •12.2.4. Розміщення файлів зв'язними списками
- •12.2.5. Індексоване розміщення файлів
- •12.2.6. Організація каталогів
- •15.1. Завдання підсистеми введення-виведення
- •15.1.1. Забезпечення ефективності доступу до пристроїв
- •15.1.2. Забезпечення спільного використання зовнішніх пристроїв
- •15.1.3. Універсальність інтерфейсу прикладного програмування
- •15.1.4. Універсальність інтерфейсу драйверів пристроїв
- •15.2. Організація підсистеми введення-виведення
- •15.2.1. Символьні, блокові та мережні драйвери пристроїв
- •15.2.2. Відокремлення механізму від політики за допомогою
- •15.3. Способи виконання операцій введення-виведення
- •15.3.1. Опитування пристроїв
- •15.3.2. Введення-виведення, кероване перериваннями
- •15.3.3. Прямий доступ до пам'яті
- •15.4. Підсистема введення-виведення ядра
- •15.4.1. Планування операцій введення-виведення
- •15.4.2. Буферизація
- •15.7. Керування введенням-виведенням: unix і Linux
- •15.7.1. Інтерфейс файлової системи
- •15.7.2. Передавання параметрів драйверу
- •15.7.3. Структура драйвера
- •15.7.4. Виконання операції введення-виведення для пристрою
- •15.8. Керування введенням-виведенням: Windows хр
- •15.8.1. Основні компоненти підсистеми введення-виведення
- •15.8.2. Виконання операції введення-виведення для пристрою
- •15.8.3. Передавання параметрів драйверу пристрою
- •17.1. Термінальне введення-виведення
- •17.1.1. Організація термінального введення-виведення
- •17.1.3. Термінальне введення-виведення у Win32 api
- •17.2. Командний інтерфейс користувача 17.2.1.
- •17.2.2. Переспрямування потоків введення-виведення
- •17.2.3. Використання каналів
- •17.3. Графічний інтерфейс користувача
- •17.3.1. Інтерфейс віконної та графічної підсистеми Windows хр
- •17.3.2. Система X Window
- •17.4. Процеси без взаємодії із користувачем
- •17.4.1. Фонові процеси на основі posix
- •17.4.2. Служби Windows хр
- •16.1. Загальні принципи мережної підтримки
- •16.1.1. Рівні мережної архітектури і мережні сервіси
- •16.1.2. Мережні протоколи
- •16.2. Реалізація стека протоколів Інтернету
- •16.2.1. Рівні мережної архітектури tcp/ip
- •16.2.2. Канальний рівень
- •16.2.3. Мережний рівень
- •16.2.4. Транспортний рівень
- •16.2.5. Передавання даних стеком протоколів Інтернету
- •16.3. Система імен dns
- •16.3.1. Загальна характеристика dns
- •16.3.2. Простір імен dns
- •16.3.3. Розподіл відповідальності
- •16.3.4. Отримання ір-адрес
- •16.3.5. Кешування ір-адрес
- •16.3.6. Типи dns-ресурсів
- •16.4. Програмний інтерфейс сокетів Берклі
- •16.4.1. Особливості роботи з адресами
- •16.4.2. Створення сокетів
- •16.4.3. Робота з потоковими сонетами
- •16.4.4. Введення-виведення з повідомленням
- •19.1. Загальні принципи завантаження ос
- •19.1.1. Апаратна ініціалізація комп'ютера
- •19.1.2. Завантажувач ос
- •19.1.3. Двоетапне завантаження
- •19.1.4. Завантаження та ініціалізація ядра
- •19.1.5. Завантаження компонентів системи
- •19.2. Завантаження Linux
- •19.2.1. Особливості завантажувача Linux
- •19.2.2. Ініціалізація ядра
- •19.2.3. Виконання процесу init
- •19.3. Завантаження Windows хр
- •20.1. Багатопроцесорні системи
- •20.1.1. Типи багатопроцесорних систем
- •20.1.2. Підтримка багатопроцесорності в операційних системах
- •20.1.3. Продуктивність багатопроцесорних систем
- •20.1.4. Планування у багатопроцесорних системах
- •20.1.5. Спорідненість процесора
- •20.1.6. Підтримка багатопроцесорності в Linux
- •20.1.7. Підтримка багатопроцесорності у Windows хр
- •20.2. Принципи розробки розподілених систем
- •20.2.1. Віддалені виклики процедур
- •20.2.2. Використання Sun rpc
- •20.2.3. Використання Microsoft rpc
- •20.2.4. Обробка помилок і координація в розподілених системах
- •20.3. Розподілені файлові системи
- •20.3.1. Організація розподілених файлових систем
- •20.3.2. Файлова система nfs
- •20.3.3. Файлова система Microsoft dfs
- •20.4. Сучасні архітектури розподілених систем
- •20.4.1. Кластеры системи
- •20.4.2. Grid-системи
- •18.1. Основні завдання забезпечення безпеки
- •18.2. Базові поняття криптографії
- •18.2.1. Поняття криптографічного алгоритму і протоколу
- •18.2.2. Криптосистеми з секретним ключем
- •18.2.3. Криптосистеми із відкритим ключем
- •18.2.4. Гібридні криптосистеми
- •18.2.5. Цифрові підписи
- •18.2.6. Сертифікати
- •18.3. Принципи аутентифікаціїі керування доступом
- •18.3.1. Основи аутентифікації
- •18.3.2. Основи керування доступом
- •18.4. Аутентифікація та керування доступом в unix
- •18.4.1. Облікові записи користувачів
- •18.4.2. Аутентифікація
- •18.4.3. Керування доступом
- •18.5. Аутентифікація і керування доступом у Windows xp
- •18.5.1. Загальна архітектура безпеки
- •18.5.2. Аутентифікація
- •18.5.3. Керування доступом
- •18.6. Аудит
- •18.6.1. Загальні принципи організації аудиту
- •18.6.2. Робота із системним журналом unix
- •18.6.3. Журнал подій Windows xp
- •18.7. Локальна безпека даних
- •18.7.1. Принципи шифрування даних на файлових системах
- •18.7.2. Підтримка шифрувальних файлових систем у Linux
- •18.7.3. Шифрувальна файлова система Windows xp
- •18.8. Мережна безпека даних
- •18.8.1. Шифрування каналів зв'язку
- •18.8.2. Захист інформації на мережному рівні
- •18.8.3. Захист інформації на транспортному рівні
- •18.9. Атаки і боротьба з ними
- •18.9.1. Переповнення буфера
- •18.9.2. Відмова від обслуговування
- •18.9.3. Квоти дискового простору
- •18.9.4. Зміна кореневого каталогу застосування
18.9. Атаки і боротьба з ними
У цьому розділі ознайомимося із деякими підходами, які можна використати для атаки на систему безпеки OC Через брак місця виклад буде обмежено атаками переповнення буфера і найпростішими прикладами відмови в обслуговуванні. Як технології запобігання атакам буде розглянуто організацію квот на ресурси і зміну кореневого каталогу застосування.
18.9.1. Переповнення буфера
Розповсюдженим типом атак на програмний код у сучасних OC є атаки переповнення буфера (buffer overflow attacks) [44]. Усі вони використовують некоректний програмний код (переважно мовою C), що не перевіряє довжину буфера, у який записують зовнішні дані, отримані від користувача. Ось приклад такого коду:
#include <stdio.h> void f() {
char buf[128]:
gets(buf); // небезпечне одержання рядка даних зі стандартного вводу
}
Функція gets(), що входить у стандартну бібліотеку мови C, вводить рядок символів довільної довжини зі стандартного вводу і розміщує їх у буфері buf. При цьому сама функція не перевіряє, скільки символів насправді було введено і чи достатньо для них місця в буфері. У ситуації, коли користувач ввів більше ніж 128 символів, програма запише дані у пам'ять, розташовану за buf.
Для того щоб зрозуміти, у чому тут полягає небезпека, розглянемо організацію пам'яті, у якій виконують застосування (рис. 18.3).
Як бачимо, адреса повернення функції і локальні змінні (зокрема і буфер buf) розміщені у програмному стеку. Коли зловмисник введе значно більше символів, ніж може бути розміщено у buf, вони переповнять буфер і будуть записані поверх адреси повернення функції. У результаті після повернення із функції відбудеться перехід за адресою, взятою із введеного зловмисником рядка. При цьому вміст рядка може бути ретельно підібраний так, щоб цей його фрагмент містив адресу коду, який бажає виконати зловмисник. Згаданий код може перебувати в іншій частині цього самого рядка і, наприклад, запускати командний інтерпретатор. Якщо застосування виконувалося із правами суперкористувача, запущений інтерпретатор дасть зловмисникові повний контроль над системою.
Для захисту від таких атак насамперед необхідно підвищувати якість розробки програмного забезпечення. Необхідно повністю відмовитися від використання функцій, які не перевіряють обсягу введених даних, замінивши їх варіантами, що роблять таку перевірку. Наприклад, замість функції gets() потрібно використати fgets():
char buf[128];
fgets(buf. sizeof(buf). stdin); // введення не більше 128 символів
Крім gets(), подібні проблеми виникають у разі використання таких функцій, як strcpy(), strcat() і sprintfC). Замість них потрібно використовувати відповідно strncpy(), strncat() і snprintf().
Захист від переповнення буфера на рівні OC може полягати в цілковитій забороні виконання коду, що перебуває у програмному стеку. Для Linux є виправлення до коду ядра, що реалізують це обмеження.
18.9.2. Відмова від обслуговування
Найпростіший приклад атаки відмови в обслуговуванні для UNIX-систем - так звана fork-бомба»:
void main() {
for (; :) forkO:
}
Очевидно, що процес, завантажений у пам'ять внаслідок запуску такої «бомби», почне негайно створювати свої власні копії, те саме продовжать робити ці копії і т. д. У старих версіях UNIX це могло швидко привести систему до неробото-здатного стану, і навіть сьогодні запуск такого застосування у системі із малим обсягом ресурсів здатний значно понизити її продуктивність.
Для боротьби із такими атаками необхідно встановлювати ліміти на ресурси. Зокрема, потрібно, щоб у системі було встановлено ліміт на максимальну кількість процесів, які можуть бути запущені під обліковим записом користувача. За замовчуванням ця кількість дорівнює 256, змінити її можна за допомогою системного виклику setrlimit():
#include <sys/resource.h>
#include <unistd.h>
struct rlimit plimit;
plimit.rlim_max = 100;
setrlі mi t(RLIMIT_N PROC. &plі mi t);
Для ліквідації наслідків такої атаки не можна намагатися негайно завершити всі процеси-бомби, виконавши, наприклад, команду вилучення всіх процесів із заданим ім'ям:
# killall -KILL bomb
Річ у тому, що після запуску «бомби» у системі швидко створюється стільки процесів, що ліміт на їхню кількість виявиться вичерпаним. Після цього всі процеси-бомби перестають створювати нащадків і залишаються у нескінченному циклі. Як тільки після виконання ki 1 la11 завершиться один із таких процесів (а вони всі не можуть завершитись одночасно), загальна кількість процесів стане менша за ліміт. У результаті якийсь інший процес набору відразу отримує можливість виконати fork() і встигає це зробити до свого завершення. Фактично після знищення поточного набору процесів його місце негайно займає новий.
Правильним підходом буде спочатку призупинити всі процеси-бомби, а потім послати їм сигнал завершення:
# killall -STOP bomb
# killall -KILL bomb
Системний виклик setrlimitO може також бути використаний для встановлення інших квот на ресурси, зокрема обмежень на кількість відкритих файлів (першим параметром потрібно задати RLIMIT_NOFILE), на частку процесорного часу, яку використовує процес (RLIMIT_CPU), на розмір процесу у пам'яті (RLIMIT_AS).
Другим важливим засобом обмеження споживання ресурсів є квоти дискового простору.