
- •Введение
- •Оформление лабораторной работы и лабораторного журнала
- •Тема 1 Понятие эквивалента. Определение эквивалента простого вещества и соединений
- •Лабораторная работа № 1 Определение молярной массы эквивалента металла по количеству выделившегося водорода
- •Контрольные вопросы:
- •Тема 2 Буферные растворы
- •Лабораторная работа № 2 Буферные растворы. Буферное действие
- •Опыт 1. Приготовление буферных растворов
- •Опыт 2. Влияние сильных кислот и щелочей на pH буферных растворов
- •Опыт 3. Влияние разбавления на pH буферного раствора.
- •Контрольные вопросы:
- •Тема 3 Химическая кинетика. Скорость химической реакции
- •Лабораторная работа №3 Скорость химических реакций
- •Опыт 1. Влияние концентрации ионов железа (III) и иодид - ионов на скорость реакции окисления иодид - ионов ионами железа (III)
- •Опыт 2. Зависимость скорости реакции от температуры
- •Опыт 3. Влияние степени измельчения реагирующих твердых частиц на скорость реакции
- •Опыт 4. Влияние катализатора на скорость реакции. Гомогенный катализ
- •Контрольные вопросы:
- •Тема 4 Гидролиз солей
- •Лабораторная работа № 4 Гидролиз.
- •Опыт 1. Гидролиз солей, образованных сильными основаниями и слабыми кислотами
- •Опыт 2. Гидролиз солей, образованных сильными кислотами и слабыми основаниями
- •Опыт 3. Гидролиз солей, образованных слабой кислотой и слабым основанием
- •Опыт 4. Необратимый гидролиз
- •Опыт 5. Влияние температуры на степень гидролиза солей
- •Опыт 6. Влияние разбавления раствора на степень гидролиза и его обратимость
- •Опыт 7. Негидролизуемость труднорастворимых соединений
- •Опыт 8. Растворение металлов в продукте гидролиза их солей
- •Контрольные вопросы:
- •6. Найти значения степени гидролиза нитрита натрия (NaNo2) и формиата калия (hcook) в растворах молярных концентраций: 0,001 и 10 моль/л.
- •Тема 5 Реакции, протекающие с изменением степени окисления атомов элементов
- •Лабораторная работа № 5 Окислительно- восстановительные реакции
- •Опыт 1. Изучение восстановительных свойств металлов и окислительных свойств кислот
- •Опыт 2. Изучение окислительно- восстановительных свойств хлороводородной кислоты
- •Опыт 3. Изучение окислительно-восстановительных свойств нитритов (тяга!)
- •Опыт 8. Взаимные переходы хромат (CrO4-) и бихромат - ионов (Cr2o72-)
- •Контрольные вопросы:
- •Тема 6 Химия р-элементов. Сера. Фосфор. Азот.
- •Лабораторная работа № 6 Химия элементов. Сера. Фосфор. Азот
- •Сера Опыт 1. Получение пластической серы (Тяга!)
- •Опыт 2. Изучение свойств сульфида натрия
- •Опыт 3. Изучение свойств сульфид-иона
- •Опыт 4. Изучение окислительно-восстановительных свойств соединений серы
- •Опыт 5. Изучение свойств серной кислоты (Выполнять под тягой!)
- •Опыт 6. Изучение свойств тиосерной кислоты
- •Азот Опыт 1. Получение аммиака
- •Опыт 2. Восстановительные свойства аммиака
- •Опыт 3. Азотистая кислота
- •Фосфор Опыт 1. Гидролиз растворимых фосфатов
- •Опыт 2. Фосфаты кальция
- •Контрольные вопросы:
- •Тема 7.
- •Лабораторная работа № 7 Химия соединений d-элементов
- •Опыт 1. Получение гидроксидов железа (II), кобальта (II) и никеля (II). Изучение свойств полученных соединений
- •Опыт 2. Свойства гидроксидов железа (III), кобальта (III) и никеля (III)
- •Опыт 3. Образование солей железа
- •Опыт 4. Получение аммиакатов кобальта (II) и никеля (II)
- •Тема 8 Произведение растворимости
- •Лабораторная работа № 8 Растворимость. Гетерогенное равновесие в растворах электролитов. Произведение растворимости
- •Опыт 1. Изучение условий образования осадков малорастворимых соединений
- •Опыт 2. Изучение условий растворения осадков
- •Опыт 3. Получение одних малорастворимых веществ из других
- •Контрольные вопросы:
- •Тема 9 Комплексные соединения
- •1. По заряду комплекса:
- •2. По числу мест занимаемых лигандами в координационной сфере:
- •3. По природе лиганда:
- •Лабораторная работа № 9 Комплексные соединения
- •Опыт 1. Получение соединений с комплексными ионами
- •Опыт 2. Сравнение устойчивости комплексных ионов
- •Опыт 3. Зависимость окраски комплексного соединения от координационного числа центрального атома – комплексообразователя
- •Опыт 4. Влияние среды на устойчивость комплексных соединений
- •Опыт 5. Ступенчатое образование комплексных ионов
- •Опыт 6. Смещение равновесия в растворах комплексных соединений при нагревании
- •Опыт 7. Различная способность ионов 3d-элементов к комплексообразованию
- •Опыт 8. Разрушение комплексных ионов
- •Опыт 9. Растворимость комплексных соединений в различных растворителях
- •Контрольные вопросы:
- •Тема 10 Методы очистки твердых веществ
- •Лабораторная работа № 10 Очистка кристаллических веществ методом перекристаллизации
- •Опыт 1. Очистка бихромата калия
- •Опыт 2. Очистка сульфата меди. (Очистка пятиводного сульфата меди перекристаллизацией)
- •Контрольные вопросы:
- •Тема 11 Соединения элементов с кислородом
- •Лабораторная работа № 11 Методы получения оксидов Опыт 1. Получение оксида олова (II)
- •Опыт 2. Получение оксида кобальта (II)
- •Контрольные вопросы:
- •Тема 12 Растворы. Приготовление растворов
- •Лабораторная работа № 12 Взвешивание. Приготовление растворов. Титрование
- •Опыт 1. Определение массовой доли вещества по относительной плотности раствора
- •Плотность и концентрация растворов гидроксида калия (koh) и гидроксида натрия (NaOh)
- •Опыт 2. Определение точной концентрации приготовленного раствора щелочи путем титрования его раствором кислоты с точно известной концентрацией
- •Контрольные вопросы:
- •Тема 13 Комплексонометрическое титрование
- •Лабораторная работа № 13 Комплексонометрическое определение общей жесткости воды
- •Ход работы
- •Контрольные вопросы:
- •Тема 14 Йодометрическое титрование
- •Лабораторная работа № 14 Йодометрическое определение меди
- •Ход работы.
- •Контрольные вопросы:
- •Список рекомендуемой литературы
- •Содержание
Лабораторная работа № 11 Методы получения оксидов Опыт 1. Получение оксида олова (II)
Рассчитать количество исходной соли олова (II), например, ZnCl2 ∙ 2H2O, которое потребуется для приготовления 7 г ZnO. Требуемое количество соли взвесить (в стакане) и растворить в небольшом количестве (20 мл) горячей концентрированной соляной кислоты (HCl). Полученный раствор перенести в стакан емкостью 200-250 мл. прилить к нему насыщенный раствор карбоната натрия (NaCO3) до щелочной реакции. Выделившийся осадок (что это за соединение?) нагревать в маточном растворе в течение 1,5 час. Образовавшийся оксид отфильтровать. Промыть водой, высушить при температуре 110 0С, взвесить. Рассчитать практический выход. Написать уравнение реакций. Дать характеристику полученного соединения.
Опыт 2. Получение оксида кобальта (II)
Взвесить 10 г нитрата кобальта (Co(NO3)2×6H2O). Навеску поместить в фарфоровую чашку и нагреть на плитке. Что наблюдается? После удаления кристаллизационной воды, сухую смесь растереть в порошок (в ступке), перенести порошок в фарфоровый тигель с крышкой и прокалить в муфельной печи 2 час при 930 С. Охлаждение прокаленного соединения осуществлять на воздухе. Охлажденный оксид взвесить, рассчитать теоретический и практический выход. Написать уравнения реакции отдельных стадий разложения. Охарактеризовать полученное соединение.
Контрольные вопросы:
1. Разложением каких соединений можно получить оксиды?
2. Написать уравнения реакций разложения:
CaCO3 →
KNO3 →
Cu(NO3) →
H3BO3 →
BaC2O4 →
Тема 12 Растворы. Приготовление растворов
Растворы это гомогенные (состоящие из одной фазы) системы, содержащие несколько компонентов. Растворы бывают газообразные, жидкие и твердые. Среди соединений (компонентов), образовавших раствор, выделяют растворенные вещества и растворитель.
Растворителем принято считать компонент, агрегатное состояние которого соответствует агрегатному состоянию раствора. Как правило, это компонент, содержание которого в растворе выше содержания остальных, называемых растворенными веществами. Наибольшее практическое значение имеют жидкие растворы, в частности – водные растворы, в которых растворителем является вода.
Растворимостью называется способность вещества растворяться в том или ином растворителе. Мерой растворимости вещества является его содержание в насыщенном растворе. Состав раствора и содержание растворенного вещества (концентрация) выражаются различными способами.
1. Массовая доля компонента i это отношение массы i-го компонента mi к массе раствора mi:
i = mi / mi ,
i безразмерная величина, принимающая значения от 0 до 1 или от 0 до 100% (в последнем случае говорят о процентной концентрации по массе).
2. Молярная доля компонента Хi это отношение числа молей i-го компонента ni к сумме молей ni всех компонентов, образующих раствор, безразмерная величина:
Хi = ni / ni .
3. Моляльная концентрация растворенного вещества, или моляльность, Сm число молей растворенного вещества n, приходящихся на 1 кг растворителя, моль/кг:
Сm
=
n
/
ms
=
,
где m – масса растворенного вещества (г); М – молярная масса растворенного вещества (г/моль); ms масса растворителя (кг).
4. Молярная концентрация растворенного вещества, или молярность, С число молей растворенного вещества n в 1 л раствора, моль/л, или, сокращенно, М:
С
= n
/
V
=
,
где V объем раствора (л); m – масса растворенного вещества (г); М – молярная масса растворенного вещества (г/моль).
5. Молярная концентрация эквивалента растворенного вещества, или нормальная концентрация, или нормальность, Сэкв число молей эквивалентов растворенного вещества nэкв в 1 л раствора, моль экв/л, или, сокращенно, н.:
Сэкв=
nэкв
/
V
=
=
,
где Мэкв – молярная масса эквивалента растворенного вещества (г/моль экв); zэкв – число эквивалентности растворенного вещества; V объем раствора (л); m – масса растворенного вещества (г); М – молярная масса растворенного вещества (г/моль).
6. Массовая концентрация Смасс – масса растворенного вещества m в 1 л раствора, г/л:
Смасс = m / V ,
где V объем раствора (л).
7. Титр Т – масса растворенного вещества в 1 мл раствора, г/мл.
Т=Смасс/1000
Можно применять и другие способы выражения состава раствора.
Для приготовления раствора заданной концентрации взвешивают необходимые массы (отмеряют необходимые объемы) чистых компонентов раствора. В химических аналитических лабораториях используют концентрированные растворы известной концентрации: фиксаналы – растворы, помещенные в герметичные ампулы заводского производства, содержащие строго определенное (обычно 0.1 моль) количество химического соединения.
Установление состава раствора является одной из задач аналитической химии. Количественный анализ проводят физическими, химическими и физико-химическими методами. Одним из наиболее простых среди них является титриметрия.
Титриметрия – аналитический метод, основанный на измерении объема раствора реагента точно известной концентрации, взаимодействующего с определяемым веществом. Растворы реагентов известной концентрации, иcпользуемые в титриметрии, называют титрованными (стандартными) растворами, или титрантами.
Методика титрования: к раствору анализируемого вещества неизвестной концентрации (пробе) добавляют небольшими порциями раствор титранта до тех пор, пока не будет получен сигнал индикатора, свидетельствующий о прекращении реакции (достижении конечной точки титрования). Момент окончания титрования можно установить при помощи химической реакции или по изменению некоторого физического свойства. Часто используются органические красители, окраска которых изменяется по достижении конечной точки титрования.
Расчет концентрации исследуемого раствора, в соответствии с законом эквивалентов, проводят по формуле:
Сэкв 1V1 = Сэкв 2V2,
где Сэкв 1 и Сэкв 2 – молярные концентрации эквивалента пробы и титранта, соответственно, моль экв/л; V1 – отмеренный объем пробы, л; V2 – объем титранта, израсходованный на титрование, л.
При определении концентраций кислот и оснований используют метод кислотно-основного титрования, в основе которого лежит реакция нейтрализации:
Н+ + ОН Н2О.
В кислотной среде концентрация ионов водорода Н+ больше концентрации гидроксид-ионов ОН, а в щелочной среде, наоборот, меньше. Для удобства характеристики среды используют понятие водородного показателя рН, численно равного отрицательному десятичному логарифму молярной концентрации ионов водорода в растворе:
рН
= lg
.
Поскольку в водных растворах произведение молярных концентраций ионов водорода и гидроксид-ионов:
=
,
называемое ионным произведением воды, – величина постоянная и при Т=298К =1014, в нейтральной среде рН = 7, в кислотной рН 7, в щелочной рН 7
Истинная точка эквивалентности кислотно-основного титрования соответствует равенству молярных концентраций ионов водорода Н+ и гидроксид-ионов ОН:
= .
Реакция нейтрализации не сопровождается видимыми изменениями, например, переменой окраски раствора. Поэтому для фиксирования точки эквивалентности используют органические красители, структура и окраска которых зависит от величины водородного показателя рН.