
- •Часть 3
- •Ф. Жолио-Кюри Введение
- •Тема 1. Физическая природа и источники радиационной опасности для человека, объектов и природной среды
- •1.1. Радиоактивное превращение ядер
- •1.1.1. Общие сведения об атоме и атомном ядре
- •Атом наименьшая часть химического элемента, являющаяся носителем его свойств.
- •1.1.2. Явление радиоактивности
- •1. Выбрасывание электрона и антинейтрино - - - распад;
- •Примечание. Так как массы выбрасываемых электрона, позитрона, нейтрино и антинейтрино крайне малы по сравнению с массой протонов и нейтронов, то массовое число атома можно считать неизменным.
- •1.1.3. Основной закон радиоактивного распада радионуклида
- •1.1.4. Закон изменения активности радионуклидных рядов
- •1.1.5. Закон спада радиоактивности продуктов ядерного деления
- •1Ч 150 суток tн
- •Вопросы для самоконтроля:
- •1.2. Виды ионизирующих излучений, их характеристики и взаимодействие с веществом
- •1.2.1. Краткая характеристика ионизирующих излучений
- •1.2.2. Взаимодействие ионизирующих излучений с веществом
- •Косл ≈ 2х/d (1.39.)
- •Пробеги бета-частиц
- •Пробеги альфа-частиц в воздухе, биологической ткани и алюминии
- •Воздействие радиоактивных излучений на физические свойства некоторых материалов
- •Вопросы для самоконтроля:
- •1.2.3. Хакрактеристики ионизирующих излучений. Единицы измерения
- •Взвешивающие коэффициенты wt*
- •Вопросы для самоконтроля:
- •1.2.4. Основные способы определения и измерения ионизирующих излучений
- •Классификация приборов
- •Радиометрия внутреннего облучения человека
- •Вопросы для самоконтроля:
- •1.3. Источники ионизирующих излучений
- •1.3.1. Космическое излучение
- •1.3.2. Земная радиация
- •Радиоактивное семейство урана-235 (ряд актиноурана)
- •1.3.3. Антропогенные источники ионизирующих излучений
- •Область применения и вид используемых закрытых источников ионизирующего излучения в различных областях
- •Атомная электростанция, как источник радиационной опасности
- •Управления
- •% Выхода осколков
- •80 105 130 150 Атомный номер изотопов
- •Ядерные боеприпасы, как источники радиационной опасности
- •Вопросы для самоконтроля:
- •Глава 2. Основы радиационной безопасности биологических систем
- •2.1. Биологическое действие ионизирующих излучений
- •2.1.1. Воздействие энергии ионизирующих излучений на биологическую ткань
- •Молекула воды
- •Хромосома
- •Молекула белка
- •Вопросы для самоконтроля:
- •2.1.3. Радиочувствительность. Реакция органов и систем человека на облучение
- •Некоторые особенности радиоустойчивости органов при внешнем облучении
- •Реакция организма на облучение. Радиационные синдромы
- •Некоторые особенности реакции органов и систем при внутреннем облучении
- •Кровеносная система
- •Вопросы для самоконтроля:
- •2.1.4. Детерминированные и стохастические эффекты. Степени лучевой болезни
- •Детерминированные эффекты
- •Острая лучевая болезнь (олб)
- •Стохастические эффекты
- •Хроническая лучевая болезнь (хлб)
- •Вопросы для самоконтроля:
- •2.2. Принципы и критерии радиационной безопасности
- •2.2.1. Международные нормы радиационной безопасности
- •Проблемы оценки малых доз облучения
- •Номинальные коэффициенты вероятности стохастических эффектов
- •Коэффициенты вероятности рака для отдельных органов
- •Принципы, цели и критерии радиационной безопасности
- •3) Облучение отдельных лиц, в сумме от всех видов деятельности не должно превышать установленных дозовых пределов (принцип нормирования индивидуальной дозы).
- •Нормирование облучения для практической деятельности
- •Вмешательство. Уровни вмешательства
- •Диапазон, в котором устанавливаются оперативные уровни вмешательства по принципу оптимизации
- •Уровни доз, при которых предполагается вмешательство
- •Уровни прогнозируемой поглощенной дозы (Дпогл) в отдельных органах за первые 10 суток, при которых необходимо срочное
- •Критерии для принятия решений о переселении и ограничении
- •Уровни для изъятия и защиты пищевых продуктов
- •Вопросы для самоконтроля:
- •2.2.2. Нормы радиационной безопасности нрб-2000
- •Раздел 1. Общие положения
- •Раздел 2. Требования к ограничению техногенного облучения в контролируемых условиях
- •Общие положения
- •Требования к ограничению техногенного облучения в контролируемых условиях
- •Требования к защите от природного облучения в производственных условиях
- •Требования к ограничению облучения населения
- •Значения дозовых коэффициентов, пределов годового поступления с воздухом, допустимой объемной активности во вдыхаемом воздухе и уровни вмешательства
- •Ограничение медицинского облучения.
- •Требования по ограничению облучения населения в условиях радиационной аварии
- •Требования к контролю за выполнением норм
- •Значения допустимых уровней радиационного воздействия
- •Допустимые уровни радиоактивного загрязнения рабочих поверхностей, кожи, спецодежды и средств индивидуальной защиты, част./(см2▪ мин)
- •Вопросы для самоконтроля:
Молекула воды
Наиболее многочисленными в организме человека являются молекулы воды. При облучении молекулы воды радиационным излучениями происходит ионизация молекулы воды, т.е нейтральная молекула воды расщепляется на положительный ион НО+ и свободный электрон, которые вступая во взаимодействия образуют различные радикалы:
Н 2О Н2О+ + е– Н2О* Н* + ОН*
Н 2О Н+ + ОН* Н* + ОН* Н2О*
Н 2О + е- Н2О* ОН* + ОН* Н2О2
Н2О+ + Н2О Н3О+ + ОН*
Свободные радикалы Н*, ОН* особенно химически активны. Время их жизни 10-15с. За это время они либо реагируют между собой с образованием молекулы воды, пероксидов водорода, либо с растворенным субстратом.
Продукты радиолиза воды (пероксид водорода) вступают в реакцию с липидами, белками, что приводит к гибели тканевых элементов, разрушению надклеточных структур (нитей хроматина), происходит разрыв углеродных связей, нарушения ферментативных систем, синтеза ДНК, белка. Нарушаются обменные процессы в организме. В связи с нарушением обмена веществ и энергии прекращается и замедляется рост тканей, наступает гибель клеток. Всасывание продуктов клеточного распада вызывает отравление организма, что приводит к преждевременному старению.
Наша справка. О степени и органах отравления можно судить, учитывая, что в мышцах 50% воды, в костях - 13% воды, в печени - 16% воды, в крови - 5% воды. Особенно опасен атомарный кислород, разрушающий мембраны клеток. Следует отметить, что присутствие кислорода в момент облучения клетки приводит к усилению лучевого поражения примерно в три раза (кислородный эффект).
В организме человека имеются гигантские молекулы - это нуклеиновые кислоты, белки и полисахариды. Основу жизни на Земле составляет молекула ДНК (дезоксирибонуклеиновой кислоты). Она входит в состав клеток.
М о л е к у л а Д Н К
Из основ биологии известно, что молекула ДНК - это хранитель генетической информации и она же "руководит" синтезом белка в соматических клетках. Она является составной частью всех живых организмов, входит в состав хромосом, которые имеются в ядре клетки. При облучении молекулы ДНК она возбуждается в целом, но из-за миграции энергии в молекуле происходит разрыв в самом слабом месте, а именно рвутся водородные связи между отдельными участками молекулы.
Около 7% поглощенной дозы приходится на ядерную ДНК. Механизм миграции энергии заключается в том, что при выбивании электрона происходит миграция дефектного участка по полинуклеотидной цепи до участка с повышенными электрон-донорными свойствами. Такое место - чаще всего участок локализации тимина или цитозина, где и образуются свободные радикалы этих оснований. При косвенном действии излучений именно на этих участках происходит реакция с продуктами радиолиза воды.
Если между нуклеотидами происходят однонитчатые разрывы, то работает механизм репарации (восстановления) под генетическиским контролем.
Примечание. Между нуклеотидами ковалентные водородные связи (связь с помощью двух электронов).
Установлено, что в молекуле может быть восстановлено до 7 разорванных связей в однонитиевых разрывах и поражения генов молекулы не наблюдается.
Примечание. Способность молекулы ДНК восстанавливать одиночные разрывы между нуклеотидами необходимое условие выживания в условиях постоянного естественного облучения радиацией.
Но если количество однонитиевых разрывов больше 7 или имеются двухнитиевые разрывы, то происходят хромосомные аберрации (разорванные концы и целые фрагменты в дальнейшем "склеиваются" в новых сочетаниях, и закодированная в генах информация искажается или теряется совсем.
По мере накопления дозы облучения растет и количество хромосомных аберраций по линейно-квадратичному закону (рис.2.2.) и зависит от вида облучения (рис.2.3).