
- •Введение
- •1. Электропроводность полупроводников
- •1.1. Электроны в твердом теле
- •1.2. Собственная проводимость
- •1.3. Дрейфовые токи
- •1.4. Примесная электропроводность
- •1.5. Диффузионные токи в полупроводниках
- •2. Электронно-дырочные переходы
- •2.1. Электронно-дырочный переход при отсутствии внешнего напряжения
- •2.2.Электронно-дырочный переход при прямом напряжении
- •2.3. Электронно-дырочный переход при обратном напряжении
- •2.4. Переход металл-полупроводник
- •3. Полупроводниковые диоды
- •3.1. Вольт-амперная характеристика полупроводникового диода
- •3.2. Емкости полупроводникового диода
- •3.3. Модели диодов
- •3.4. Температурные свойства полупроводниковых диодов
- •3.5. Рабочий режим диода
- •3.6. Применение выпрямительных диодов
- •3.7. Импульсный режим диодов
- •3.8. Конструкции полупроводниковых диодов
- •3.9. Стабилитроны
- •3.10. Варикапы
- •3.11. Туннельные и обращённые диоды
- •3.12. Полупроводниковые диоды для свч
- •3.13. Лавинно-пролетные диоды
- •3.14. Диод Ганна
- •4. Биполярные транзисторы
- •4.1. Общие сведения о транзисторах
- •4.2. Физические процессы в транзисторе
- •4.3. Основные схемы включения транзисторов
- •4.4. Характеристики транзисторов
- •4.5. Модели транзисторов
- •4.6. Влияние температуры на работу транзисторов
- •4.7. Схемы питания и стабилизации режима транзисторов
- •4.8. Усиление с помощью транзистора
- •4.9. Частотные свойства транзисторов
- •4.10. Импульсный режим транзисторов
- •4.11. Основные типы биполярных транзисторов
- •5. Полевые транзисторы
- •5.1. Полевые транзисторы с управляющим переходом
- •5.4. Биполярные транзисторы с изолированным затвором
- •6. Тиристоры и однопереходный транзистор
- •6.1. Диодный тиристор
- •6.2. Триодные тиристоры
- •6.3. Однопереходный транзистор
- •7. Оптоэлектронные приборы
- •7.1. Фотодиоды
- •7.2. Фототранзисторы
- •7.3. Светодиоды
- •7.4. Оптроны
- •8. Элементы интегральных микросхем
- •8.1. Пленочные и гибридные ис
- •8.2. Полупроводниковые ис
- •8.3. Схемы с инжекционным питанием
- •8.4. Схемы на приборах с зарядовой связью
- •Заключение
1.2. Собственная проводимость
Полупроводники представляют собой вещества, которые по своей удельной электрической проводимости занимают среднее положение между проводниками и диэлектриками.
При Т = 300 К у проводников удельная электрическая проводимость имеет значения 104—106 См/см (удельное сопротивление 10-4 – 10-6 Ом∙см), у диэлектриков она меньше 10-10 См/см (более 1010 Ом∙см), а у полупроводников ее значения находятся в пределах от 10-9 до 104 Ом/см (109 – 10-4 Ом∙см). Как видно, для полупроводников характерен очень широкий диапазон удельной проводимости. Большинство веществ относится именно к полупроводникам. В настоящее время для полупроводниковых приборов помимо кремния и германия применяются некоторые химические соединения, например арсенид галлия GaAs, фосфид индия InP ,антимонид индия InSb и др.
Для полупроводников характерен отрицательный температурный коэффициент электрического сопротивления. При возрастании температуры сопротивление полупроводников уменьшается, а не увеличивается, как у большинства твердых проводников. Кроме того, электрическое сопротивление полупроводников очень сильно зависит от количества примесей, а также от таких внешних воздействий, как свет, электрическое поле, ионизирующее излучение и др.
Принцип работы полупроводниковых диодов и транзисторов связан с тем, что в полупроводниках существует электропроводность двух видов. Так же, как и металлы, полупроводники обладают электронной электропроводностью, которая обусловлена перемещением электронов проводимости.
Полупроводники обладают также дырочной электропроводностью, которая не наблюдается в металлах.
В атоме полупроводника под влиянием тепловых или других воздействий один из более удаленных от ядра валентных электронов переходит в зону проводимости. Тогда атом будет иметь положительный заряд, численно равный заряду электрона. Такой атом можно назвать положительным ионом. Но надо иметь в виду, что при ионной электропроводности, например в электролитах, ток представляет собой движение ионов (само слово ион означает путешественник), а при дырочной электропроводности механизм перемещения электрических зарядов иной. В полупроводниках кристаллическая решетка достаточно прочна. Ее ионы не передвигаются, а остаются на своих местах.
Отсутствие электрона в атоме полупроводника условно назвали дыркой. Этим подчеркивают, что в атоме не хватает одного электрона, т. е. образовалось свободное место. Дырки ведут себя, как элементарные положительные заряды.
Возникновение дырки показано на рис. 1.4 с помощью знакомой нам плоскостной модели полупроводника. Один из электронов, участвующих в ковалентной связи, получив дополнительную энергию, становится электроном проводимости, т. е. свободным носителем заряда, и может перемещаться в кристаллической решетке. А его прежнее место теперь свободно. Оно именно и является дыркой, изображенной на рисунке светлым кружком.
Рис. 1.4. Возникновение пары электрон – дырка
Электропроводность полупроводников наиболее правильно может быть объяснена их энергетической структурой (рис. 1.5). Как мы знаем, ширина запрещенной зоны у полупроводников сравнительно невелика (для германия 0,67эВ, а для кремния 1,11 эВ). При температуре абсолютного нуля полупроводник, не содержащий примесей, является диэлектриком, в нем нет электронов и дырок проводимости. Но при повышении температуры электропроводность полупроводника возрастает, так как электроны валентной зоны получают при нагреве дополнительную энергию и за счет этого все большее их число преодолевает запрещенную зону и переходит из валентной зоны в зону проводимости. Этот переход показан на рис. 1.5 сплошной стрелкой. Таким образом, появляются электроны проводимости и возникает электронная электропроводность.
Каждый электрон, перешедший в зону проводимости, оставляет в валентной зоне свободное место — дырку, т. е. в валентной зоне возникают дырки проводимости, число которых равно числу электронов, перешедших в зону проводимости. Следовательно, вместе с электронной создается и дырочная электропроводность.
Рис. 1.5. Энергетическая структура полупроводника
Электроны и дырки, которые могут перемещаться и поэтому создавать электропроводность, называют подвижными носителями заряда или просто носителями заряда. Принято говорить, что под действием теплоты происходит генерация пар носителей заряда, т. е. возникают пары: электрон проводимости — дырка проводимости. Сплошная стрелка на рис.1.5 показывает переход электрона из валентной зоны в зону проводимости, т.е. генерацию. Генерация пар носителей может происходить также под действием света, электрического поля, ионизирующего излучения и др.
Вследствие того что электроны и дырки проводимости совершают хаотическое тепловое движение, обязательно происходит и процесс, обратный генерации пар носителей. Электроны проводимости снова занимают свободные места в валентной зоне, т. е. объединяются с дырками. Такое исчезновение пар носителей называется рекомбинацией носителей заряда. Этому процессу соответствует показанный штриховой стрелкой на рис. 1.5 переход электрона из зоны проводимости в валентную зону. Процессы генерации и рекомбинации пар носителей всегда происходят одновременно. Рекомбинация ограничивает возрастание числа пар носителей, и при каждой данной температуре устанавливается определенное число электронов и дырок проводимости, т. е. они находятся в состоянии динамического равновесия. Это означает, что генерируются все новые и новые пары носителей, а ранее возникшие пары рекомбинируют.
Полупроводник без примесей называют собственным полупроводником или полупроводником i-muna. Он обладает собственной электропроводностью, которая, как было показано, складывается из электронной и дырочной электропроводности. При этом, несмотря на то что число электронов и дырок проводимости в собственном полупроводнике одинаково, электронная электропроводность преобладает, что объясняется большей подвижностью электронов по сравнению с подвижностью дырок. Понять это нетрудно. Ведь дырочная электропроводность представляет собой перемещение электронов более ограниченное (менее свободное), нежели перемещение электронов проводимости.
Удельная электрическая проводимость полупроводников зависит от концентрации носителей заряда, т. е. от их числа в единице объема, например, в 1см3. Будем обозначать концентрации электронов и дырок проводимости соответственно буквами п и р от слов negative (отрицательный) и positive (положительный). Очевидно, что для собственного полупроводника всегда:
ni = pi ,
где индекс i указывает, что эти концентрации относятся к собственному полупроводнику.
Число атомов N в 1 см3 металла или полупроводника имеет значение порядка 1022. При температуре, близкой к 20 °С, концентрация носителей заряда (приближенно) для чистого германия:
ni = pi = 1013 cм-3,
а для кремния:
ni = pi = 1010 cм-3.
Следовательно, в собственном полупроводнике при комнатной температуре число подвижных носителей заряда по отношению к общему числу атомов составляет около 10-7% для германия и около 10-10% для кремния. А в металлах число электронов проводимости не меньше числа атомов (п ≥ N). Поэтому электрическая проводимость полупроводников в миллионы и миллиарды раз меньше, чем у металлов. Например, при комнатной температуре удельное сопротивление меди равно1,7x10-6 Ом∙см (1 Ом∙см есть сопротивление 1 см3 вещества), германия — примерно 45, кремния — около 230000 Ом∙см и стекла – 1014 Ом∙см.