
- •Часть II
- •Содержание
- •0. Лазерный нагрев материалов 7
- •1. Лазерное разрушение поглощающих материалов 92
- •0. Современные представления об оптическом пробое прозрачных сред 136
- •Глава 0. Воздействие сверхкоротких лазерных импульсов на материалы 150
- •Введение
- •0. Лазерный нагрев материалов
- •0.1. Общая характеристика нагревания лазерным излучением
- •0.0.0. Тепловые эффекты в конденсированных средах
- •0.0.1. Основные особенности температурной кинетики при лазерном воздействии на металлы
- •0.0.2. Теплопроводностные механизмы отвода тепла. Уравнение теплопроводности, начальное и граничные условия
- •0.1. Термические эффекты, сопровождающие лазерный нагрев
- •0.1.0. Термомеханические эффекты
- •0.1.1. Фазовые переходы в твердом состоянии (лазерное упрочнение)
- •0.1.2. Эмиссионные процессы
- •0.1.3. Основные особенности лазерной активации процессов аррениусовского типа. Лазерное окисление
- •0.1.4. Диффузионно-химические явления
- •0.1.5. Экзотермические эффекты при импульсном лазерном воздействии на металлы
- •0.2. Линейные режимы лазерного нагрева
- •0.2.0. Понятие температуры электронной и решеточной подсистем
- •0.2.1. Нагрев полупространства экспоненциально спадающим с глубиной тепловым источником
- •0.2.2. Нагрев металла импульсным излучением постоянной мощности
- •0.2.3. Нагрев материала лазерным пучком с гауссовым профилем
- •0.2.4. Нагрев материала постоянным лазерным излучением, луч сфокусирован в пятно круглого сечения
- •0.2.5. Влияние временной зависимости интенсивности лазерного излучения
- •0.2.6. Лазерный нагрев тонких слоев и пленок
- •0.2.7. Нагрев материалов в интерференционном лазерном поле
- •0.2.8. Особенности нагрева материала движущимся световым пятном.
- •0.3. Нелинейные режимы лазерного нагрева
- •0.3.0. Нагрев с учетом температурной зависимости поглощательной способности
- •0.3.1. Изменение поглощательной способности окисляющихся материалов при лазерном нагревании. Тепловая неустойчивость
- •0.3.2. Интерференционные явления в окисном слое
- •0.4. Лазерное плавление поверхности
- •0.4.0. Вакансионная модель плавления
- •Контрольные вопросы к разделу 1
- •1. Лазерное разрушение поглощающих материалов
- •1.0. Общая характеристика механизмов лазерного разрушения
- •1.0. Механическое низкотемпературное разрушение хрупких материалов
- •1.0.0. Разрушение упругими напряжениями
- •1.0.1. Разрушение остаточными напряжениями
- •1.1. Химические механизмы разрушения
- •1.2. Высокотемпературные механизмы с участием испарения
- •1.3. Поляритонный механизм формирования лазерно-индуцированного поверхностного рельефа
- •1.4. Лазерное испарение
- •1.4.0. Кинетика испарения плоской поверхности
- •1.4.0.0. Испарение в вакуум и среду с противодавлением
- •1.4.0.1. Температурная граница перехода от нагрева к испарению
- •1.4.1. Теплофизика перехода от нагрева к испарению
- •1.4.2. Одномерная задача о лазерном нагреве с испарением
- •1.4.2.0. Установление стационарного режима. Определение квазистационарных параметров
- •1.4.2.1. Зависимость температуры и скорости лазерного разрушения от плотности светового потока.
- •1.4.3. Вытеснение расплава избыточным давлением паров
- •1.5. Свойства лазерного пара и плазмы, их влияние на процесс разрушения
- •Контрольные вопросы к разделу 2
- •0. Современные представления об оптическом пробое прозрачных сред
- •0.0. Физические представления об оптическом пробое идеальных диэлектриков
- •0.0.0. Оптический пробой газов
- •0.0.1. Оптический пробой идеально чистых твердых тел
- •0.1. Тепловой механизм оптического пробоя реальных сред
- •0.1.0. Основные экспериментальные закономерности и особенности оптического пробоя и разрушения оптически неоднородных сред
- •0.1.1. Тепловая неустойчивость
- •0.1.2. Статистическая концепция оптического пробоя
- •0.1.3. Размерная зависимость порога пробоя
- •Контрольные вопросы к разделу 3
- •Глава 0. Воздействие сверхкоротких лазерных импульсов на материалы
- •0.0. Двухтемпературная модель при сверхкоротком воздействии
- •0.1. Особенности экспериментального изучения воздействия фемтосекундных лазерных импульсов на материалы
- •0.2. Особенности разлета вещества при фемтосекундном лазерном воздействии
- •0.3. Плавление при воздействии сверхкоротких лазерных импульсов
- •0.3.0. Термическое плавление с высокими скоростями
- •0.3.1. Нетермическое плавление
- •0.4. Фотофизическая абляция
- •0.5. Уплотнение электронного газа и кулоновский взрыв в поверхностном слое проводника
- •0.6. Формирование лазерно-индуцированного поверхностного рельефа при воздействии сверхкоротких лазерных импульсов
- •0.6.0. Механизм образования поверхностных периодических структур при воздействии сверхкоротких импульсов
- •0.6.1. Резонансная дифракция на плоской поверхности с периодической модуляцией оптических свойств
- •0.6.2. Формирование периодического профиля поля температур
- •0.6.3. Эволюция периодических поверхностных структур в расплавленном поверхностном слое
- •0.7. Силовое действие сверхкоротких импульсов на прозрачные диэлектрики
- •Контрольные вопросы к разделу 4
- •Список рекомендуемой литературы
- •Кафедра лазерных технологий и экологического приборостроения
- •История кафедры лт и эп делится на
- •4 Разных периода:
- •1) Лазерное формирование многофункциональных зондов (мз) для зондовой микроскопии с целью создания универсальных зондовых микроскопов.
- •3) Наноструктурирование тонких металлических и полупроводниковых слоев.
- •4) Управление микрогеометрией, наношероховатостью и физико–химичекими свойствами поверхности материалов
- •2. Лаборатория лазерной очистки и реставрации произведений культуры и искусства (пкин) организована совместно с фирмой ооо «Мобильные лазерные системы».
- •Взаимодействие лазерного излучения с веществом (силовая оптика).
Введение
Во второй части курса рассмотрены следующие за стадией поглощения света и передачи энергии тепловым колебаниям решетки этапы тепловой модели взаимодействия лазерного излучения с веществом: лазерное нагревание и разрушение. Учтена роль обратных связей по оптическим параметрам поверхности материала, изменяющимся в процессе лазерного воздействия. Рассмотрены различные физические процессы, сопровождающие силовое лазерное воздействие: возникновение и эволюция напряжений, изменение структуры поверхности, фазовые переходы, термохимические явления и т.п.
В основу учебного пособия положен курс лекций, который на протяжении многих лет читал Лауреат Государственной премии СССР; заслуженный деятель науки и техники Российской Федерации, доктор физико-математических наук, профессор Михаил Наумович Либенсон.
В разные годы им были рассмотрены проблемы лазерного нагрева металлов и металлических пленок с учетом кинетики изменения их оптических свойств; фотовозбуждения и нагрева полупроводников интенсивным излучением; оптического пробоя диэлектриков сложного химического состава. Им был предложен и исследован термохимический механизм взаимодействия непрерывного лазерного излучения с металлами в окислительной среде (на воздухе). В начале 80-х годов М.Н. Либенсон обратил внимание на важную роль возбуждения поверхностных электромагнитных волн в процессе лазерного термического воздействия на поверхность различных материалов и предложил поляритонный механизм самоорганизации лазерно-индуцированного поверхностного рельефа – широко распространенного эффекта при лазерных воздействиях. В различные годы им были предложены и теоретически изучены несколько физических механизмов лазерно-индуцированных неустойчивостей в конденсированных средах, в том числе при действии сверхкоротких (фемтосекундных) импульсов. В последние годы он развивал представления о взаимодействии лазерного излучения с поверхностью в устройствах ближнепольной оптики, когда область локализации света значительно меньше длины его волны.
0. Лазерный нагрев материалов
0.1. Общая характеристика нагревания лазерным излучением
Уже первые эксперименты по воздействию лазерного излучения на материалы, проведенные в 60-х годах прошлого века, показали, что лазерный нагрев по своей физической сущности не отличается от других видов нагрева. Как и при любом другом нагревании, однозначной характеристикой теплового действия является температура, а сам нагрев состоит в увеличении амплитуды тепловых колебаний решетки. Перенос тепла в твердом теле осуществляется механизмами теплопроводности, из которых для металлов и сильно вырожденных полупроводников основным является электронная теплопроводность, а для неметаллов – решеточная.
Лазерный нагрев может сопровождаться изменением оптических и теплофизических свойств материала, его тепловым расширением, а также фазовыми переходами в твердом состоянии и плавлением. В ряде случаев при нагревании могут активироваться диффузионные процессы в твердом теле и некоторые химические реакции на его поверхности и в приповерхностных слоях. Таким образом, нагреванию материалов лазерным излучением сопутствуют обычные, достаточно изученные явления.
В то же время высокие скорости нагревания и охлаждения и большие пространственные градиенты температуры обуславливают особенности лазерного нагрева. Они могут привести и приводят к значительным отличиям в протекании тепловых процессов, стимулированных лазерным воздействием.
Важную роль при нагревании лазерным излучением играет изменение оптических свойств вещества, так как от величин поглощательной способности и коэффициента поглощения непосредственно зависит количество выделенного тепла и его пространственное распределение. Образование обратных связей по оптическим параметрам поверхности материала, которые изменяются в процессе лазерного воздействия, вносит принципиальные особенности в ход протекающих процессов.
Уникальная специфика лазерного нагрева проявляется в области коротких и ультракоротких длительностей лазерных импульсов и заключается в том, что необходимо рассматривать отдельно температуры для подсистемы электронов и решетки. Подробнее об этом будет сказано в главе 5.
Стадия нагревания материалов лазерным излучением является основной при изучении физической сущности технологических операций, проводимых без разрушения материала, например, сварки, термообработки, диффузии и т.д. Для операций лазерной обработки материалов, связанных с разрушением и удалением некоторой их части, стадия нагревания является предварительной, но вместе с тем весьма важной, так как ее анализ позволяет определить условия начала разрушения.