- •Глава 1. Что такое экспертная система?
- •Глава 4. Символические вычисления 63
- •Глава 5. Системы, основанные на знаниях 75
- •Глава 11. Эвристическая классификация (I) 176
- •Глава 12. Эвристическая классификация (II) 191
- •Глава 13. Иерархическое построение и проверка гипотез 208
- •Глава 14. Решение проблем конструирования (I) 222
- •Глава 15. Решение проблем конструирования (II) 236
- •Глава 16. Средства формирования пояснений 252
- •Глава 17. Инструментальные средства разработки экспертных систем 274
- •Глава 18. Системы с доской объявлений 294
- •Глава 19. Система отслеживания истинности предположений 308
- •Глава 20. Формирование знаний на основе машинного обучения 323
- •Глава 21. Сети доверия 342
- •Глава 22. Рассуждения, основанные на прецедентах 351
- •Глава 23. Гибридные системы 362
- •Глава 24. Заключение 377
- •Студентам и преподавателям
- •Инженерам-программистам
- •Научным работникам
- •Глава 1. Что такое экспертная система?
- •1.1. Смысл экспертного анализа
- •Извлечение информации из первичных данных (таких как сигналы, поступающие от гидролокатора);
- •1.2. Характеристики экспертных систем
- •1.3. Базовые функции экспертных систем
- •1.3.1. Приобретение знаний
- •1.3.2. Представление знаний
- •1.2. Синтаксис и семантика представления семейных отношений
- •1.3.3. Управление процессом поиска решения
- •1.3. Обслуживание автомобиля
- •1.3.4. Разъяснение принятого решения
- •Пользователи, работающие с системой, нуждаются в подтверждении того, что в каждом конкретном случае заключение, к которому пришла программа, в основном корректно.
- •1.4. Загадка одного портрета
- •1.4. Резюме и структура книги
- •1.4.1. Текущее состояние проблемы
- •Способен решить проблему;
- •В процессе решения задачи используются способности органов чувств человека, недоступные на сегодняшний день в мире машин;
- •В решение задачи вовлечены соображения здравого смысла человечества или большой объем знаний, само собой разумеющихся для любого человека (более подробно об этом — в главе 3).
- •1.4.2. Распределение материала книги по главам
- •Рекомендуемая литература
- •Глава 2. Обзор исследований в области искусственного интеллекта
- •Отличие между оценкой, полученной mycin, и оценками качества рекомендаций ведущих специалистов Станфорда, невелико, а по сравнению с рядовыми врачами система оказалась даже на более высоком уровне.
- •10.1. Оболочки CommonKads и kastus
- •Замечания в круглых скобках в столбце "Причины" следует рассматривать как фоновые условия в системе more.
1.3.3. Управление процессом поиска решения
При проектировании экспертной системы серьезное внимание должно быть уделено и тому, как осуществляется доступ к знаниям и как они используются при поиске решения [Davis, 1980, а]. Знание о том, какие знания нужны в той или иной конкретной ситуации, и умение ими распорядиться — важная часть процесса функционирования экспертной системы. Такие знания получили наименование метазнаний — т.е. знаний о знаниях. Решение нетривиальных проблем требует и определенного уровня планирования и управления при выборе, какой вопрос нужно задать, какой тест выполнить, и т.д.
Использование разных стратегий перебора имеющихся знаний, как правило, оказывает довольно существенное влияние на характеристики эффективности программы. Эти стратегии определяют, каким способом программа отыскивает решение проблемы в некотором пространстве альтернатив (см. главы 2 и 3). Как правило, не бывает так, чтобы данные, которыми располагает программа работы с базой знаний, позволяли точно "выйти" на ту область в этом пространстве, где имеет смысл искать ответ.
Большинство формализмов представления знаний может быть использовано в разных режимах управления (см. врезку 1.3), и разработчики экспертных систем продолжают экспериментировать в этой области. В последующих главах будут описаны системы, которые специально подобраны таким образом, чтобы проиллюстрировать отличия в существующих подходах к решению проблемы управления. В каждой из представленных систем есть что-нибудь полезное для студентов, специализирующихся в области разработки и исследования экспертных систем.
1.3. Обслуживание автомобиля
Представьте себе, что ваш автомобиль с трудом заводится, а в пути явно чувствуется снижение мощности. Сами по себе эти симптомы недостаточны для того, чтобы принять решение, где же искать источник неисправности — в топливной или электросистеме автомобиля. Познания в устройстве автомобиля подсказывают — нужно еще поэкспериментировать, прежде чем звать на помощь механика. Возможно, плоха топливная смесь, поэтому присмотритесь к выхлопу и нагару на свечах. Возможно, сбоит распределитель — посмотрите, не повреждена ли его крышка. Эти довольно специфические эвристики не гарантируют, что отыщется действительная причина, но вдруг вам улыбнется фортуна, и вы найдете неисправность без утомительной процедуры последовательной проверки всех систем.
Скорее всего, ваших знаний достаточно для того, чтобы выполнить общую проверку, прежде чем заниматься доскональным изучением отдельных узлов. Например, посмотреть, достаточно ли мощная искра в свече (если это так, то подозрения с электросистемы можно снять), прежде чем проверять аккумулятор. При отсутствии специальных эвристик, чем более методично вы будете действовать, тем больше шансов быстро найти причину неисправности. Общее эвристическое правило гласит:
"Сначала проверь весь узел, а уже потом приступай к проверке его компонентов".
Это правило можно считать частью режима управления — систематической стратегии применения имеющихся знаний. Другое эвристическое правило можно сформулировать, например, так:
"Сначала меняй более дешевые детали, а уже потом берись за более дорогие".
В некоторых случаях эти две эвристики могут противоречить друг другу, так что нужно заранее выбрать, какая из них имеет приоритет в случае, если обе включены в один и тот же режим управления.
