
- •6.0. Компрессоры, их классификация и использование в различных отраслях промышленности
- •6.1. Принцип действия поршневых компрессоров.
- •6.2. Компрессоры, используемые на предприятиях нефтегазопереработки и нефтехимии
- •6.3. Поршневые компрессоры малой производительности
- •6.4. Поршневые компрессоры средней производительности
- •6.5. Поршневые компрессоры большой производительности
- •6.6. Дожимающие поршневые компрессоры
- •6.7. Поршневые компрессоры сверхвысокого давления
- •6.8. Компрессоры без смазки цилиндров
- •6.9. Компрессоры с лабиринтным уплотнением.
- •6.10. Мембранные компрессоры
- •6.11. Газомоторные компрессоры.
- •6.11. Коммуникации поршневых компрессоров
- •6.12. Эксплуатация поршневых компрессоров.
- •6.13. Обслуживание компрессора.
- •7.0. Центробежные компрессоры
- •Основные модификации центробежных компрессоров типа 43гц2
- •Ротационный компрессор
- •Центробежный компрессор, принцип его действия
- •Осевой компрессор
- •Эксплуатация турбокомпрессоров
- •Раздел первый
- •Назначение и классификация кс
- •2. Основное оборудование компрессорных станций
- •2.1. Газомотокомпрессоры
- •2.2. Турбоприводные газоперекачивающие агрегаты
- •2.3. Электроприводные газоперекачивающие агрегаты
- •2.4. Нагнетатели природного газа
Основные модификации центробежных компрессоров типа 43гц2
Модификация компрессора |
Расчетная молекуляр- ная масса газа |
Подача по условиям всасывания м3/с |
Потребляемая мощность, кВт |
|
|||
Тем-ра низкого давления, оС |
Тем-ра высокого давления, оС |
||||||
43ГЦ2-100/5-110 |
22,95 |
1,747 |
5974 |
156 |
141 |
||
43ГЦ2-100/5-110М1 |
21,168 |
1,773 |
5220 |
164 |
144 |
||
43ГЦ2-100/5-110М2 |
19,7 |
1,851 |
5568 |
171 |
148 |
||
43ГЦ2-100/5-110М3 |
18,4 |
1,949 |
5868 |
160 |
153 |
||
43ГЦ2-100/5-110М4 |
17,5 |
2,014 |
5884 |
188 |
160 |
Ротационный компрессор
Ротационные компрессоры относятся к объемным машинам. Роль поршня в них выполняют вращающиеся роторы или винты.. На этом же принципе основана работа вакуум-насосов, применяемых для отсасывания среды (воздуха) и создания вакуума в аппарате. В конструктивном оформлении вакуум-насос и ротационный компрессор аналогичны друг другу, только в компрессоре нагнетательное отверстие меньшего размера. Различают сухие и водокольцевые ротационные машины. Роторы могут быть выполнены со скользящими и неподвижными лопатками.
Значительное распространение получили ротационные пластинчатые компрессоры, (рис. ) имеющие ротор 2 с пазами, в которые свободно входят пластины 3.
Рис. Ротационный пластинчатый компрессор:
1 – отверстие для всасывания газа (воздуха); 2 – ротор; 3 – пластина; 4 – корпус; 5 - холодильник; 6 и 7 – трубы для отвода и подвода охлаждающей воды.
Ротор расположен в центре корпуса 4 эксцентрично. При его вращении по часовой стрелке пространства, ограниченные пластинами, а также поверхностями ротора и цилиндра корпуса, в левой части компрессора будет возрастать, что обеспечит всасывание газа через отверстие 1. В правой части компрессора объемы этих пространств уменьшаются, находящийся в них газ сжимается и затем подается из компрессора в холодильник 5 или непосредственно в нагнетательный трубопровод. Корпус ротационного компрессора охлаждается водой, для подвода и отвода которой предусмотрены трубы 6 и 7. Степень повышения давления в одной ступени пластинчатого ротационного компрессора обычно бывает от 3 до 6. Двухступенчатые пластинчатые ротационные компрессоры с промежуточным охлаждением газа обеспечивают давление до 1,5 МПа.
Принципы действия ротационного и поршневого компрессора в основном аналогичны и отличаются лишь тем, что в поршневом компрессоре все процессы проходят в одном и том же месте (рабочем цилиндре), но в разное время (из-за чего и потребовалось предусмотреть клапаны). В ротационном компрессоре всасывание и нагнетание осуществляются одновременно, но в различных местах, разделенных пластинами ротора.
Регулирование производительности ротационного компрессора осуществляется обычно изменением частоты вращения ротора.
Водокольцевые ротационные компрессоры и вакуум насосы имеют аналогичное устройство и одинаковый принцип работы. Они состоят (рис. ) из цилиндрического корпуса 2, закрытого с торцов крышками. Внутри корпуса эксцентрично расположен ротор 1 с неподвижными пластинками (лопатками), которые бывают прямыми и изогнутыми. Насос заполняют до оси вала водой или другой жидкостью. При вращении ротора находящаяся в корпусе компрессора рабочая жидкость отбрасывается к стенкам корпуса, образуется жидкостное кольцо. Если ротор расположен эксцентрично в корпусе, то между ротором и жидкостным кольцом образуется серповидное пространство. Рабочее пространство разделено лопатками на камеры, объем которых изменяется при вращении ротора. Проходя это пространство, лопатки сначала увеличивают объем камеры между ротором и жидкостным кольцом (всасывание), а затем уменьшают его (нагнетание). Всасывание происходит через отверстия 6 в крышках, а нагнетание – через отверстие 5.
Ротационные газовые машины бывают простого действия – однокамерные и двойного действия - двухкамерные, а также одноступенчатые и двухступенчатые. В двухступенчатых ротационных компрессорах после первой ступени производится охлаждение газа. Поэтому водокольцевой компрессор может засасывать не только жидкость, но и воздух (газы), т.е. является самовсасывающим.
В промышленности получили широкое применение ротационные вауум-насосы и компрессоры следующих марок: РМК-1, РМК-2, РМК-3, РМК-4, КВН-4, КВН-8 и др.
Рис. Схема водокольцевого компрессора открытого типа:
1 – рабочее колесо (крыльчатка); 2 – корпус; 3 – канал обводной; 4 - нагнетательная щель; 5 - нагнетательный патрубок 6 - всасывающий патрубок; 7 - всасывающая щель; 8 – полость компрессора.