
- •1) Электронная конфигурация внешних оболочек атомов и типы сил связи в твердых телах.
- •2) Структуры важнейших полупроводников - элементов aiv, avi и соединений типов аiiiвv,
- •3) Симметрия кристаллов.
- •4)Трансляционная симметрия кристаллов.
- •5) Базис и кристаллическая структура.
- •6) Элементарная ячейка.
- •7) Примитивная ячейка.
- •8) Ячейка Вигнера—Зейтца. Решетка Браве.
- •Решетки Бравэ
- •9) Обозначения узлов, направлений и плоскостей в кристалле.
- •10) Обратная решетка, ее свойства.
- •11) Зона Бриллюэна.
- •Характерные точки зоны Бриллюэна
- •Интересные особенности
- •12) Примеси и структурные дефекты в кристаллических и аморфных полупроводниках.
- •13) Химическая природа и электронные свойства примесей.
- •14) Точечные, линейные и двумерные дефекты.
- •Источники и стоки точечных дефектов
- •Комплексы точечных дефектов
- •Одномерные дефекты
- •Двумерные дефекты
- •Трёхмерные дефекты
- •21) Основные приближения зонной теории.
- •22) Волновая функция электрона в периодическом поле кристалла.
- •23) Зона Бриллюэна.
- •24) Энергетические зоны.
- •25) Эффективная масса.
- •Эффективная масса для некоторых полупроводников
- •26) Плотность состояний.
- •Определение
- •27) Уравнения движения электронов и дырок во внешних полях.
- •28) Искривление энергетических зон в электрическом поле.
- •29) Связь зонной структуры с оптическими свойствами полупроводника.
- •30) Уровни энергии, создаваемые примесными центрами в полупроводниках.
- •31) Доноры и акцепторы.
- •32) Мелкие и глубокие уровни.
- •33) Водородоподобные примесные центры.
- •42) Проводимость, постоянная Холла и термо-эдс. По характеру проводимости. Собственная проводимость
- •Примесная проводимость
- •43) Дрейфовая скорость, дрейфовая и холловская подвижности, фактор Холла.
- •44) Дрейфовый и диффузионный ток.
- •45) Соотношение Эйнштейна.
- •46) Механизмы рассеяния носителей заряда в неидеальной решетке.
- •47) Взаимодействие носителей заряда с акустическими и оптическими фононами.
- •48) Рассеяние носителей заряда на заряженных и нейтральных примесях.
- •49) Генерация и рекомбинация неравновесных носителей заряда.
- •50)Уравнение кинетики рекомбинации.
- •51) Времена жизни.
- •52) Фотопроводимость.
- •53) Механизмы рекомбинации.
- •54) Излучательная и безызлучательная рекомбинация.
- •55) Межзонная рекомбинация.
- •56) Рекомбинация через уровни примесей и дефектов.
- •57) Центры прилипания.
- •59) Схема энергетических зон в контакте металл-полупроводник.
- •60) Обогащенные, обедненные и инверсионные слои пространственного заряда вблизи контакта.
- •61) Вольт-амперная характеристика барьера Шоттки.
- •62) Энергетическая диаграмма р-п перехода.
- •63) Инжекция неосновных носителей заряда в р-п переходе.
- •64) Гетеропереходы.
- •65) Энергетические диаграммы гетеропереходов.
62) Энергетическая диаграмма р-п перехода.
Энергетическая диаграмма p-n-перехода. a) Состояние равновесия b) При приложенном прямом напряжении c) При приложенном обратном напряжении
p-n-Перехо́д или электронно-дырочный переход — область пространства на стыке двух полупроводников p- и n-типа, в которой происходит переход от одного типа проводимости к другому.
В полупроводнике p-типа концентрация дырок намного превышает концентрацию электронов. В полупроводнике n-типа концентрация электронов намного превышает концентрацию дырок. Если между двумя такими полупроводниками установить контакт, то возникнет диффузионный ток — носители заряда, хаотично двигаясь, перетекают из той области, где их больше, в ту область, где их меньше. При такой диффузии электроны и дырки переносят с собой заряд. Как следствие, область на границе станет заряженной, и область в полупроводнике p-типа, которая примыкает к границе раздела, получит дополнительный отрицательный заряд, приносимый электронами, а пограничная область в полупроводнике n-типа получит положительный заряд, приносимый дырками. Таким образом, граница раздела будет окружена двумя областями пространственного заряда противоположного знака.
Электрическое поле, возникающее вследствие образования областей пространственного заряда, вызывает дрейфовый ток в направлении, противоположном диффузионному току. В конце концов, между диффузионным и дрейфовым токами устанавливается динамическое равновесие, и перетекание зарядов прекращается.
Если приложить внешнее напряжение так, чтобы созданное им электрическое поле было направленным противоположно направлению электрического поля между областями пространственного заряда, то динамическое равновесие нарушается, и диффузионный ток преобладает над дрейфовым током, быстро нарастая с повышением напряжения. Такое подключение напряжения к p-n-переходу называется прямым смещением.
Если же внешнее напряжение приложено так, чтобы созданное им поле было одного направления с полем между областями пространственного заряда, то это приведет лишь к увеличению областей пространственного заряда, и ток через p-n-переход не идёт. Такое подключение напряжения к p-n-переходу называется обратным смещением.
63) Инжекция неосновных носителей заряда в р-п переходе.
ИНЖЕКЦИЯ носителей (от лат. injectio — вбрасывание), проникновение неравновесных (избыточных) носителей заряда в полупроводник или диэлектрик под действием электрич. поля. Источником избыточных носителей служит контактирующий ПП. При контактной И. внеш. электрич. поле нарушает равновесие потоков носителей заряда через контакт двух тв. тел с разными работами выхода Ф. При приведении тв. тел в контакт возникают диффузионные потоки носителей, приводящие к тому, что в приконтактной области одно тело заряжается положительно, а другое — отрицательно. Вблизи контакта возникает электрич. поле, создающее потоки носителей заряда, к-рые компенсируют диффузионные потоки. Если внеш. поле направлено против контактного, то появляется поток избыточных эл-нов из тела с меньшей Ф в тело с большей Ф и поток избыточных дырок в обратном направлении.
И. основных носителей создаёт нескомпенсированный пространств. заряд, поле к-рого препятствует их проникновению в глубь ПП и ограничивает инжекц. ток. Инжекция основных носителей наблюдается в слоях высокоомных полупроводников и диэлектриков, толщина к-рых сравнима с глубиной проникновения неравновесных носителей. Она осуществляется в антизапирающих контактах. В ПП с высокой электропроводностью а (напр., в Ge и Si) инжекция основных носителей не наблюдается, т. к. глубина их проникновения крайне мала.
При И. неосновных носителей их заряд нейтрализуется основными носителями. Поэтому в ПП с высокой а неосновные носители могут перемещаться за счёт амбиполярной диффузии и амбиполярного дрейфа носителей. Глубина проникновения избыточных носителей ограничивается рекомбинацией. При малой напряжённости электрич. поля она определяется длиной диффузии (Dt)1/2, где D — коэфф. амбиполярной диффузии, т — время жизни носителей; в достаточно сильном поле Е она ~mЕt; (m — амбиполярная подвижность). Коэфф. И. наз. отношение тока неосновных носителей через контакт к полному току. И. осуществляется запирающими контактами.